NI 43-101 TECHNICAL REPORT FOR THE Horizon Lithium Project

TONOPAH, NEVADA

REPORT RSI-3334

PREPARED BY Tabetha Stirrett, P.Geo., RESPEC Erik Hemstad, PE, RESPEC

RESPEC 290A–2600 8th Street East Saskatoon, SK S7H 0V7

PREPARED FOR Pan American Energy Corp. 610 3rd Street SW Calgary, AB T2P 3E6

EFFECTIVE DATE: DECEMBER 21, 2023

RESPEC.COM

DATE AND SIGNATURE PAGE

This National Instrument 43-101 Technical Report, with an effective date of December 21, 2023, was completed by the following Qualified Persons on behalf of Pan American Energy Corp.

QUALIFIED PERSON

Signed by:

Tabetha Stirrett, P.Geo. Responsible for Items: Sections 1, 2, 3, 7, 8, 9, 10, 13, 14, 24, 25, and 26 Date: January 3, 2024

QUALIFIED PERSON

Signed by:

Erik Hemstad, PE Responsible for Items: Sections 4, 5, 6, 11, 12, and 15 to 23 Date: January 3, 2024

i.

CERTIFICATE OF AUTHOR

I, Tabetha Stirrett, Professional Geologist, as an author of the Technical Report titled *NI 43-101 Technical Report for the Horizon Lithium Project* (TR), effective date December 21, 2023, do hereby certify that:

- I am a consulting geologist of RESPEC Consulting, Inc. (RESPEC), with an office located at 290A–2600 8th Street East, Saskatoon, Saskatchewan, Canada S7H 0V7.
- I am a professional geologist and have been practicing in this capacity since May 1997.
- / I am a graduate of the University of Saskatchewan and earned a degree in geology in 1997.
- I am a member in good standing of the Association of Professional Engineers and Geoscientists of Saskatchewan (Member #10699) and a Certified Professional Geologist (Member #115881).
- As a consulting geologist, I have been involved with potash, borate, lithium, coal, oil and gas, and other mineral exploration since 1997. These tasks have included the following:
 - » Since 2008, I have been involved with assessing numerous stratiform sedimentary projects for exploration companies throughout North and South America. I have worked on shallow coal deposits suitable for open pit extraction and utilizing similar exploration techniques. I was responsible for the development of the drilling, sampling, core logging and technical reporting.
 - » Other relevant projects are related to the geology and exploration planning for potash deposits in Utah, Arizona, and New Mexico, which are employ similar exploration techniques and have similar depositional environments. I was responsible for geology, exploration and drill planning, seismic exploration, and data collection. I was also responsible for the resource modeling on all of these projects.
 - » I have extensive experience with the sedimentary deposits of Saskatchewan and have worked with junior companies to develop exploration plans, estimate resources, and produce technical reports for listing on stock exchanges. I have also performed similar work for junior companies internationally.
 - » I have logged and interpreted sedimentary cores in all of the basins where I have worked. I developed the quality assurance/quality control (QA/QC) procedures for core sampling for my company.
 - » I have supervised the preparation of technical reports.
 - » I have conducted due-diligence reviews on potash properties in Australia, the United States (Arizona and North Dakota), Spain, Thailand, and Canada (Saskatchewan).
- / As a result of my experience and qualifications, I am a Qualified Person as defined in National Instrument (NI) 43-101.
- I am independent of the issuer applying all of the tests in Section 1.5 of NI 43-101.
- I am responsible for Sections 1, 2, 3, 7, 8, 9, 10, 13, 14, 24, 25, and 26 of this TR.
 - I have no prior involvement with the Property that is the subject of the TR.
 - My most recent personal inspection of the Property was on March 17 and 18, 2023.

1

1

ii.

- I have read NI 43-101, NI 43-101F1, and the portions of the TR for which I am responsible, and the portions of the TR for which I am responsible have been prepared in compliance with NI 43-101 and Form 43-101F1.
- As of the effective date of this TR, to the best of my knowledge, information, and belief, this TR contains all scientific and technical information that is required to be disclosed to make the TR not misleading.

Signed Date: January 3, 2024

Originally Signed and Sealed

Tabetha Stirrett, P.Geo. RESPEC Consulting, Inc.

CERTIFICATE OF AUTHOR

I, Erik Hemstad, Professional Engineer, as an author of the Technical Report titled *NI 43-101 Technical Report for the Horizon Lithium Project* (TR), effective date December 21, 2023, do hereby certify that:

- I am a consulting professional engineer of RESPEC Company, LLC (RESPEC), with an office located at 660 Rood Avenue, Suite A, Grand Junction, Colorado, 81501.
- I am a graduate of Michigan Technological University and earned a bachelor's degree in geological engineering in 2005 and a master's degree in civil engineering in 2011. I am a graduate of Colorado Mesa University and earned a master of business administration in 2022. I am a registered professional engineer in good standing in the states of Colorado (License #0056872), Utah (License #13291992-2202), Nevada (License #031160), and New Mexico (License #27204).
- I am a member in good standing of the Association of Professional Engineers and Geoscientists of Saskatchewan (Member #71489) and the Society for Mining, Metallurgy & Exploration (Member #04199416).
- / As a geological engineer, I have been involved with lithium and other industrial and critical minerals exploration and reporting since 2011. These tasks have included the following:
 - » I have performed geologic modeling and technical resource reporting for evaporite, brine, and aggregate deposits for conventional surface and underground mining and solution-mined deposits across North America.
 - » I have been involved in exploration program design and management across various minerals including lithium clays and brines, potash, trona, gypsum, limestone, and coal, where I provided geological interpretation, geophysical evaluation, quality assurance/quality control program development and execution, and mining engineering design.
 - » I have performed due-diligence reviews on conventional soft rock, hard rock, and solution-mined evaporite properties in the United States, Canada, Europe, Africa, and Asia.
- / As a result of my experience and qualifications, I am a Qualified Person as defined in National Instrument (NI) 43-101.
- I am independent of Pan American Energy Corp. applying all the tests in Section 1.5 of NI 43101.
- I am responsible for Sections 4, 5, 6, 11, 12, and 23 of this TR.
- / I have not had prior involvement with the Property that is the subject of the TR.
- / My most recent personal inspection of the Property was from February 25, 2023, through March 6, 2023.
- / I have read NI 43-101, Form 43-101F1, and the portions of the TR for which I am responsible, and the portions of the TR for which I am responsible have been prepared in compliance with NI 43-101 and Form 43-101F1.

RSI-3334

iv

/ As of the effective date of this TR, to the best of my knowledge, information, and belief, this TR contains all scientific and technical information that is required to be disclosed to make the TR not misleading.

Signed Date: January 3, 2024

Originally Signed and Sealed

Erik Hemstad, PE RESPEC Company, LLC

TABLE OF CONTENTS

DAT	E AND) SIGNATURE PAGE	I
	QUAL	IFIED PERSON	i
	QUAL	IFIED PERSON	i
CER	TIFIC/	ATE OF AUTHOR	11
CER	TIFIC	ATE OF AUTHOR	IV
1.0	EXEC	CUTIVE SUMMARY	1
	1.1	PROPERTY DESCRIPTION	1
	1.2	GEOLOGY AND MINERALIZATION	1
	1.3	STATUS OF EXPLORATION	2
	1.4	MINERAL RESOURCE AND RESERVES ESTIMATES	2
	1.5	PROJECT RISK	3
	1.6	CONCLUSIONS AND RECOMMENDATIONS	3
2.0	INTR	ODUCTION	5
	2.1	ISSUER OF REPORT	5
	2.2	TERMS OF REFERENCE	5
	2.3	SOURCES OF INFORMATION	5
	2.4	GLOSSARY OF TERMS	6
	2.5	QUALIFIED PERSONS AND REPORT CONTRIBUTORS	8
	2.6	SITE VISITS	8
3.0	RELI	ANCE ON OTHER EXPERTS	10
4.0	PRO	PERTY DESCRIPTION AND LOCATION	11
	4.1	PROPERTY DESCRIPTION AND LOCATION	11
	4.2	MINERAL RIGHTS	14
	4.3	ENCUMBRANCES OR RISKS TO PERFORM WORK ON PROPERTY	17
	4.4	ENVIRONMENTAL LIABILITIES	17
5.0	ACCI	ESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, AND PHYSIOGRAPHY	18
	5.1	ACCESSIBILITY	18
	5.2	CLIMATE	20
	5.3	LOCAL RESOURCES AND INFRASTRUCTURE	20
	5.4	TOPOGRAPHY AND VEGETATION	21
6.0	HIST	ORY	22
	6.1	PRIOR OWNERSHIP	22
	6.2	EXPLORATION AND DEVELOPMENT HISTORY	22
7.0	GEOI	LOGICAL SETTING AND MINERALIZATION	23
	7.1	REGIONAL GEOLOGY	23
	7.2	LOCAL GEOLOGY	25

vi

	7.3	PROPERTY GEOLOGY	28
		7.3.1 Ephemeral-Stream Deposits	30
		7.3.2 Fan and Pediment Deposits	30
		7.3.3 Older Alluvial Deposits	30
		7.3.4 Trachyandesite of Red Mountain Flows	31
		7.3.5 Siebert Formation, Volcaniclastic, and Tuffaceous Sedimentary Rocks	31
		7.3.6 Fraction Tuff–Tonopah Summit Member, Ash-Flow Tuffs	31
		7.3.7 Mizpah Formation, Predominantly Flows	31
		7.3.8 Silicic Porphyry Dikes and Intrusive Rocks	32
		7.3.9 Tonopah Formation Ash-Flow Tuffs and Sedimentary Rocks	32
		7.3.10 Lone Mountain Plutonic Rocks and Harkless Formation	32
	7.4	MINERALIZATION	33
	7.5	GEOLOGIC STRUCTURE	33
8.0	DEPC	SIT TYPE	35
	8.1	DEPOSIT TYPES AND GENETIC MODELS FOR LITHIUM	35
	8.2	MINERAL SOURCES AND ENRICHMENT	35
9.0	EXPL	RATION	37
		NG	
10.0		PHASE I DRILLING	
		PHASE II DRILLING	
		RESULTS	
		INTERPRETATIONS	
11/		LE PREPARATION, ANALYSES, AND SECURITY	
11.0		SAMPLE PREPARATION AND ANALYSIS	
		QUALITY ASSURANCE/QUALITY CONTROL	
	11.2	11.2.1 Lithium CRM Standards	
		11.2.2 CRM Blanks	
		11.2.3 Field Duplicates	
		11.2.4 Check Laboratory Repeats	
	11.3	OPINION OF THE QUALIFIED PERSON ON ADEQUACY OF SAMPLE PREPARATION	
10 /			
12.0		VERIFICATION PROPERTY AND CORE FACILITY INSPECTIONS	
		DATABASE VERIFICATION	
		OPINION OF THE INDEPENDENT QUALIFIED PERSON	
10.4			
		AL PROCESSING AND METALLURGICAL TESTING	
14.(AL RESOURCE ESTIMATES	
	14.1		
	14.3	PROPERTY GEOLOGY RELEVANT TO RESOURCE MODEL	64

14.4 GEOLOGIC MODEL	65
14.5 MINERAL DOMAIN MODELING	65
14.6 ASSAY CODING, CAPPING, AND COMPOSITING	68
14.7 DENSITY	69
14.8 BLOCK MODEL CODING	70
14.9 GRADE INTERPOLATION	
14.10 MINERAL RESOURCES	
14.11 DISCUSSION OF RESOURCES – RISKS AND RECOMMENDATIONS	77
15.0 MINERAL RESERVE ESTIMATES	79
16.0 MINING METHODS	80
17.0 RECOVERY METHODS	
18.0 PROJECT INFRASTRUCTURE	82
19.0 MARKET STUDIES AND CONTRACTS	83
20.0 ENVIRONMENTAL STUDIES, PERMITTING, AND SOCIAL OR COMMUNITY IMPACT	84
21.0 CAPITAL AND OPERATING COSTS	85
22.0 ECONOMIC ANALYSIS	86
23.0 ADJACENT PROPERTIES	87
24.0 OTHER RELEVANT DATA AND INFORMATION	90
25.0 INTERPRETATIONS AND CONCLUSIONS	91
25.1 THE PROPERTY	91
25.2 EXPLORATION	
25.3 RESOURCE ESTIMATE	
25.4 CONCLUSIONS OF THE QUALIFIED PERSONS	
26.0 RECOMMENDATIONS	93
26.1 PHASE I	93
26.1.1 Geophysical Survey	93
26.1.2 Phase III Drilling	
26.1.3 METALLURGICAL TESTING	
26.2 PHASE II	94
27.0 REFERENCES	95
APPENDIX A: PLACER CLAIMS	A-1

viii

LIST OF TABLES

TABLE		PAGE
1-1	Summary of Mineral Resource Estimates at the Property	3
1-2	Estimated Cost Range for Each Recommended Project Activity	4
2-1	Units of Measure	6
2-2	Acronyms, Terms, and Abbreviations	7
4-1	Horizon Option Agreement	14
7-1	Geologic Units Present Within and Adjacent to the Property	30
10-1	Summary of the Phase I Drilling Program (Listed Chronologically)	40
10-2	Summary of the Phase II Drilling Program (Listed Chronologically)	42
10-3	Drilling Statistics for Horizon Lithium	43
10-4	Peak Grades of Lithium Encountered per Drillhole	44
11-1	Summary of Sample Batches Dispatched to ALS	46
11-2	Summary of QA/QC Program for Horizon Lithium	48
11-3	CRM Standards for Lithium	48
11-4	Observed Average Values, Ranges, and Failure Counts of CRM Standards Analyzed	50
11-5	Summary of CRM Blanks Tested for Horizon Lithium	50
11-6	Summary of Field Duplicates From Analyses Performed by ALS	53
11-7	Summary of Check Pulp Repeats Analyzed by Actlabs With Matching Sample Tag Numbers From ALS	56
14-1	Descriptive Statistics of Sample Assays in Horizon Drillhole Database	64
14-2	Summary of Drilling in the Database for the Project Deposit Resource Estimate	64
14-3	Approximate Grade Ranges of Lithium Domains	65
14-4	Descriptive Statistics of Assays by Lithium Domains	68
14-5	Descriptive Statistics of Project Composites by Lithium Domains	69
14-6	Project Deposit Applied Densities	70
14-7	Project Search-Ellipse Orientation and Maximum Search Distance	70
14-8	Project Estimation Parameters	71
14-9	Pit Optimization Parameters	71
14-10	Project Lithium Mineral Resources	74
14-11	Project Indicated and Inferred Mineral Resources at Various Cutoffs	76
14-12	Project Resource Classification Parameters	77
23-1	Adjacent Properties	87
23-2	Lithium-Focused Adjacent Properties With Reported Mineral Resource Estimates	89
25-1	Summary of Mineral Resource Estimates at the Property	92
26-1	Estimated Cost Range for Each Recommended Project Activity	93

ix

LIST OF FIGURES

FIGUR	E	PAGE
2-1	Access Roads Into the Area	9
2-2	Drillhole HL020 During Qualified Person Visit in March 2023, With Drillcore Laid Out From the Night Shift	9
4-1	General Location Map	12
4-2	Property Location Map	13
4-3	Land Tenure Map	16
5-1	Accessibility and Infrastructure Map	19
5-2	Monthly Climate Data, 1991–2021	20
5-3	View of Horizon Lithium Property Looking West Down Mike Wells Road Toward Lone Mountain	21
10-1	Map Showing Phase I and Phase II Drillholes	39
11-1	CRM Standard MEG.Li.10.14 Geochemical Laboratory Results	49
11-2	CRM Standard MEG.Li.10.15 Geochemical Laboratory Results	49
11-3	CRM Blank SiBlk.21.01 Geochemical Laboratory Results	51
11-4	CRM Blank CaBlk.17.13 Geochemical Laboratory Results	51
11-5	CRM MEG.PRPBLK.19.12 Geochemical Laboratory Results	52
11-6	Crossplot of Field Duplicate Pairs for Horizon Lithium	54
11-7	Relative Percent Difference (Mean) of the Field Duplicate Pairs	54
11-8	Crossplot of the Check Laboratory Pulp Repeats for Horizon Lithium	58
11-9	Relative Percent Differences (Mean) of the Check Laboratory Repeats	58
14-1	North-to-South Cross Section 470250E Showing Lithium Domains and Geology	67
14-2	Plan View Map Showing Pit Optimized Resource Outline	73
23-1	Adjacent Properties	88

1.0 EXECUTIVE SUMMARY

Pan American Energy Corp. (Pan American) is a North American mining exploration company engaged in the acquisition, exploration, and development of mineral properties. Pan American has retained RESPEC Company, LLC (RESPEC) to prepare this Technical Report (TR) for the Horizon Lithium property (the Property) located in Esmeralda County, Nevada.

1.1 PROPERTY DESCRIPTION

The Property totals 7,015 hectares (ha) controlled by the United States Department of the Interior Bureau of Land Management (BLM). The Property consists of 839 contiguous unpatented lode mineral claims registered under the name FMS Lithium Corporation (FMS or FMSL). The mineral claims are registered under FMS rather than Pan American because of a property option agreement between FMS, Horizon Lithium LLC (Horizon), and Pan American, whereby Pan American was granted the option to earn a 100 percent interest in the Property (and certain associated rights with respect to the Property) (detailed in Section 4.2, Mineral Rights). The approximate center of the Property is located at latitude 38.054°N and longitude 117.355°W (4212299N, 468856E, Universal Transverse Mercator (UTM) Zone 11, North American Datum 1983 [NAD83]). The eastern Property boundary lies 5 kilometers (km) west of the town of Tonopah, Nevada.

Livestock grazing operations have occurred at various areas within the Property since the late 1800s. These activities have left behind unimproved roads, prospect pits, cattle ponds, and abandoned railroad grades. The authors are not aware of any environmental liabilities associated with any prior pursuits on the Property. The surface topography of the Property is that of a broad and generally flat alluvial plane that is interspersed by ephemeral-stream beds and shallow arroyos, which coalesce and drain to the north and northwest. No trees exist on the Property, but vegetation includes sagebrush, small shrubs, and grasses native to the high desert of the American West.

1.2 GEOLOGY AND MINERALIZATION

The Property is located on a southeastern limb of the Big Smoky Valley in west-central Nevada along the western margin of the Basin and Range province. The Basin and Range geological province is a vast region of fault-bounded mountain ranges and elongated valleys associated with north-to-northeast trending fault systems resulting from broad crustal extension. Basin and Range faulting in the Tonopah area is estimated to have begun approximately 16 to 17 million years ago (Mya), as indicated by the age of fluvial and lacustrine deposits of the Siebert Formation [Bonham and Garside, 1979]. The Siebert Formation comprises epiclastic conglomerates, sandstone, siltstone, claystone, and lesser quantities of subaerially and subaqueously deposited tuffs and volcaniclastic debris [Bonham and Garside, 1979]. The geological study by Bonham and Garside [1979] documents exposures of the Siebert Formation to the west and concludes that the Siebert Formation is present throughout the intra-basin subsurface yet is concealed by a veneer of Quaternary sediments.

Clay-hosted lithium concentrations are known to form through any of three depositional models: (1) alteration of volcanic glass to lithium-rich clays; (2) precipitation from lacustrine waters; and (3) incorporation of lithium into existing clays [Asher-Bolinder, 1991]. Geological research and mineral

investigations conducted elsewhere in the Big Smoky Valley have presented evidence for each of these processes within and around the Siebert Formation lacustrine and fluvial sequences.

1.3 STATUS OF EXPLORATION

Exploration activity for lithium was not conducted within the Property until Pan American's preliminary activities in late 2022. On January 31, 2023, Pan American's Amendment to the Horizon Lithium Project was approved by the BLM Tonopah Field Office for a 22-drillhole exploration plan. Beginning in February 2023, the company mobilized equipment and initiated the drilling program. Twelve drillholes were completed by the end of April 2023. This initial scope of operations was deemed Phase I. On May 5, 2023, the BLM approved an amended plan that dropped 9 original drill sites and added 10 new locations (Phase II). The 9 drillholes of Phase II began in May and were completed by July 2023. The final Phase I and Phase II drill program total was 21 drillholes, yielding a meterage total of 4,538.6 meters (m). Data from 20 of the 21 drillholes were used to construct the mineral resource estimate. The unused drillhole only penetrated alluvial gravels and did not yield any geochemical samples.

1.4 MINERAL RESOURCE AND RESERVES ESTIMATES

Lithium resources were estimated and are reported herein with an effective date of November 15, 2023. No mineral reserves have been estimated for the Property. The estimated mineral resources were classified by geological and quantitative confidence in accordance with the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) *Definition Standards for Mineral Resources and Reserves* [CIM, 2014] and the *National Instrument (NI) 43-101 Standards of Disclosure for Mineral Projects* [Canadian Securities Administrators, 2016].

The mineral resources were estimated by inverse distance to the second power (ID²). Two estimation passes were performed independently for each of the three mineral domains. Estimated grades and partial percentages of the domains were used to calculate weight-averaged lithium grades for each block. Grades and percentages outside modeled domains were included in calculations to produce fully block-diluted grades.

The mineral resources were tabulated to reflect potential open pit mining extraction as the primary scenario. A pit optimization was produced to meet the requirement of reasonable prospects for eventual economic extraction and reports production as lithium carbonate equivalent (LCE). The in-pit resources are reported at a cutoff grade of 300 parts per million (ppm) lithium. Mineral resources that are not mineral reserves do not have demonstrated economic viability. The estimated mineral resources at the Property are shown in Table 1-1.

LCE **Cutoff Lithium** Total Average-Grade Lithium Classification Lithium (ppm) (K-tonnes) Grade (ppm) (K-tonnes) (K-tonnes) Indicated 300 372,845 669 249 1,325

680

1,668

8,879

Table 1-1. Summary of Mineral Resource Estimates at the Property

Notes	_

Inferred

/ The mineral resource estimate is in metric tonnes.

300

/ Mineral resources comprise all model blocks at a 300 ppm lithium cutoff within an optimized pit.

2,453,963

- / Mineral resources are block-diluted tabulations.
- / To describe the resource in terms of industry-standard LCE, a conversion factor of 5.323 was used to convert elemental lithium to LCE.
- / Twenty drillholes were used in the mineral resource estimate.
- An inferred mineral resource has a lower confidence level than measured and indicated resources and must not be converted to mineral reserves. Most of the inferred mineral resources could be upgraded to indicated mineral resources with continued delineation drilling.
- / Mineral resources potentially amenable to open pit mining methods and leach processing are reported using a lithium carbonate price of US\$20,000/tonne, a throughput of 30,000 tonnes/day, assumed metallurgical recoveries of 66 percent, mining costs of US\$2.20/tonne mined, processing costs of US\$14.12/tonne processed, and general and administrative costs of US\$0.42/tonne processed. The results from pit optimization are used solely to test for "reasonable prospects for economic extraction" and do not represent an attempt to estimate mineral reserves. There are no mineral reserves on the Property. The results are used as a guide to assist in preparing the mineral resource estimate and selecting an appropriate resource reporting cutoff grade.
- / The estimate of mineral resources may be materially affected by environmental, permitting, legal, title, taxation, sociopolitical, marketing, or other relevant issues.
- / The effective date of the mineral resource estimate is November 15, 2023.
- / All figures are rounded to reflect the relative accuracy of the estimate, and sums may vary because of rounding.

1.5 PROJECT RISK

Property mineral resource classification is based on the confidence in the underlying data. The following uncertainties could impact the advancement and further classification of the resource at the Property:

- / Potential for additional unknown barren sedimentary and tuffaceous beds
- / Potential for subsurface faults offsetting or truncating lithium mineralization
- / Potential for additional density samples to significantly alter bulk density assumptions
- / Lack of metallurgical data

Furthermore, metallurgical testing may reveal that input costs for the practical extraction of lithium are higher than anticipated. Given that processing costs are a significant factor when determining economic viability, the resulting cutoff grade may be higher than the base cutoff grade of 300 ppm used for this resource estimate.

1.6 CONCLUSIONS AND RECOMMENDATIONS

The Qualified Persons (QPs) have reviewed the available Property data and visited the Property in February and March 2023. The authors believe the public data reviewed and the geological interpretations derived from this information are accurate and a reasonable representation of the Property. The Property hosts a large-tonnage resource with respectable grades. It is located close to supporting infrastructure and within a jurisdiction friendly to mineral development. The authors of this

TR conclude that the project is one of merit and is worthy of further exploration and technical investigation. A calculated and methodical approach to exploring the remainder of the Property will be critical to long-term success, along with continued market demand for products and services dependent upon lithium-ion battery storage. Project risk related to mineral processing should be addressed as it moves into further development phases.

The authors recommend that Pan American conduct two phases of additional work on the Property, including exploration, metallurgical testing, and develop a preliminary economic assessment (PEA). A reasonable, phased approach to this strategy would include:

- 1. Phase I
 - » Geophysical Survey. Conduct a seismic survey of the Property to define the thickness of overburden sediments and gain a better understanding of underlying structural features.
 - Exploration and Infill Drilling. Completed drillholes in the western and southern Property extents will laterally expand the stratigraphic understanding and potentially grow the mineral resource. Infill drilling will aid in upgrading the resource classification and could extend the resource to greater depths.
 - Metallurgical Testing. The development of a processing strategy is paramount to the project advancement and in overall de-risking. The authors recommend that Pan American continue pursuing partnerships with select academic and institutional research groups to develop the process for the recovery of the claystone-hosted lithium.

2. Phase II

» PEA. To define the economic viability of the Property, Pan American should complete a thorough scoping study of the potential profitability and risks associated with the project.

Table 1-2 provides an estimated cost range for each of these recommendations.

Estimated Cost Range (thousands, CAD)
ise l
\$130-200
\$1,500-2,000
\$160-220
se II
\$250-600

Table 1-2. Estimated Cost Range for Each Recommended Project Activity

2.0 INTRODUCTION

2.1 ISSUER OF REPORT

This TR was prepared at the request of Pan American to disclose material information on the Property in western Nevada, situated west of the town of Tonopah, Nevada. Pan American is a North American mining exploration company, headquartered in Calgary, Alberta, engaged in the acquisition, exploration, and development of mineral properties prospective for lithium mineralization. Pan American's current assets are located in Canada and the USA and include properties prospective for hard rock pegmatitebased lithium and claystone lithium.

The authors are independent of Pan American and have no interest in any manner in the mineral properties discussed in this TR. The effective date of this TR is December 21, 2023.

2.2 TERMS OF REFERENCE

Pan American commissioned the authors to complete a mineral resource estimate and prepare a TR on the Property. The TR supports the disclosures in Pan American's press release entitled "Pan American Energy Corp Announces one of the Largest Identified Lithium Deposits in the US at the Horizon Lithium Project" dated November 20, 2023.

The authors prepared this TR in accordance with the following:

- / NI 43-101 Standards of Disclosure for Mineral Projects (NI 43-101)
- / Companion Policy 43-101CP
- / Form 43-101F1 Technical Report of the Canadian Securities Administrators, effective June 30, 2011

The mineral resource estimate on the Property has been prepared in accordance with CIM [2014] as per NI 43-101 requirements. Only mineral resources are estimated for the Property, no mineral reserves are defined.

2.3 SOURCES OF INFORMATION

This TR is a compilation of publicly available information and information ascertained from drilling and other exploration activities undertaken by Pan American. References set out in this TR are from publicly available reports, including government geological publications and publicly disclosed technical information from adjacent properties. All public information and reports are cited in Chapter 27.0.

The interpretations and conclusions presented in this TR are primarily based on information from the authors:

- / Review of historical geologic information from sources, such as:
 - » The United States Geological Survey
 - » The Nevada Bureau of Mines and Geology
 - » The International Commission on Stratigraphy

/ Review of lithium exploration and technical reporting for adjacent properties, including:

- » American Battery Technology Company
- » American Lithium Corp.
- » Blackrock Silver Corp.
- » Enertopia Corp.
- / Review of the information generated from the completion of 21 exploratory drillholes on the Property and subsequent geochemical testing, and
- / Site visits and inspections.

2.4 GLOSSARY OF TERMS

This TR commonly uses geological, technical, and industry-specific terminology. Tables 2-1 and 2-2 provide lists of the units of measurement and most common terms and phrases.

Term	Definition	
°C	Degrees Celsius	
°F	Degrees Fahrenheit	
μm	microns	
ft	feet	
g	grams	
ha	hectares	
km	kilometers	
m	meters	
mm	millimeters	
msl	meters above sea level	
Mt	metric tonnes	
MT	short tons	
Муа	million years ago	
ppm	parts per million	

Table 2-1. Units of Measure

Term	Definition
Actlabs	Activation Laboratories Ltd.
ALS	ALS USA
BLM	United States Department of the Interior Bureau of Land Management
CAD	Canadian dollars
CIM	Canadian Institute of Mining, Metallurgy and Petroleum
CRM	Certified Reference Material
FMS or FMSL	FMS Lithium Corporation
Horizon	Horizon Lithium LLC
Horizon Effective Date	September 27, 2022
Horizon Option Agreement	property option agreement between Pan American, FMS, and Horizon
ICP-MS	inductively coupled plasma mass spectrometry
ICP-OES	inductively coupled optical emission spectroscopy
ID^2	inverse distance to the second power
KB	KB Drilling Co.
LCE	lithium carbonate equivalent
LCL	lower confidence limit
MEG	Moment Exploration Geochemistry LLC
NAD83	North American Datum 1983
NI	National Instrument
Pan American	Pan American Energy Corp.
PEA	preliminary economic assessment
Property	Horizon Lithium property
QA	quality assurance
QC	quality control
QP	Qualified Person
RESPEC	RESPEC Company, LLC
RPD	relative percent difference
TD	total depth
TR	Technical Report
UCL	upper confidence limit
UTM	Universal Transverse Mercator
VWAP	volume-weighted average price

7

2.5 QUALIFIED PERSONS AND REPORT CONTRIBUTORS

The following are the QPs for this TR, as defined in 43-101:

- Tabetha Stirrett, P. Geo., CPG, RESPEC Company, LLC
- / Erik Hemstad, PE, RESPEC Company, LLC

The following RESPEC individuals assisted in the preparation of the TR under the direct supervision of the QPs. Michael Lindholm and Nathan Forsythe, under the supervision of QP Tabetha Stirrett, prepared the geological model and resource estimation. Benjamin Haveman, Camilo Rojas, and Bella Fleck, under the supervision of Tabetha Stirrett, assisted with the preparation of the geological information, exploration, drilling sections, and adjacent properties. Benjamin Haveman, under the supervision of QP Erik Hemstad, assisted in the preparation of sections regarding property, accessibility, local resource, and history. Camilo Rojas, under the supervision of QP Erik Hemstad, assisted in the preparation of the section regarding sample preparation and analysis, data verification, and adjacent properties.

2.6 SITE VISITS

Ms. Stirrett conducted the site visit on March 17 and 18, 2023. At the time of the site visit, hole HL020 was being drilled. The road access, site construction, active drilling, and core logging procedures were inspected. Several of the completed drill sites were also inspected. During her visit to the core logging facility, Ms. Stirrett also reviewed the core handling, assay sample preparation, and shipment procedures, as well as the Certified Reference Material (CRM) sample preparation and insertion protocols with the field geologists. Figures 2-1 and 2-2 are photographs taken by Ms. Stirrett while touring the Property.

Erik Hemstad performed an extended visit at the Property from February 25, 2023, through March 6, 2023. During this time, Mr. Hemstad inspected drilling operations by KB and monitored activities at the core processing facility in Tonopah, Nevada. These activities consisted of supervision during core recovery and transportation, inspection of all drilling locations to include spot verification of select claim stake markers, geologic logging and assay sample preparation, chain-of-custody fulfillment, coordination with ALS that included a laboratory visit and inspection, and geologic database construction and oversight.

Figure 2-1. Access Roads Into the Area.

Figure 2-2. Drillhole HL020 During Qualified Person Visit in March 2023, With Drillcore Laid Out From the Night Shift.

3.0 RELIANCE ON OTHER EXPERTS

Except as set forth below, the authors did not rely on a report, opinion, or statement of another expert who is not a QP, or on information provided by Pan American concerning political, environmental, or tax matters. The authors have relied upon Pan American to provide information concerning the legal title to the Property (as set out in Section 4.2 – Mineral Rights) and the material terms of all agreements governing the Property (as set out in Section 4.2 – Mineral Rights). The description of the Property discussed in Section 4.2 is derived from a list of placer claims provided by Pan American to the authors and included herein as Appendix A. The description of the material terms of the agreements governing the Property was provided by Pan American to the authors. The authors did not attempt to independently verify the placer claim information or the legal descriptions of the contracts governing the Property.

4.0 PROPERTY DESCRIPTION AND LOCATION

4.1 PROPERTY DESCRIPTION AND LOCATION

The Property encompasses 7,015 ha and is located in west-central Nevada, approximately 360 km southeast of Reno, Nevada, and 360 km northwest of Las Vegas, Nevada, as shown in Figure 4-1. The approximate center of the Property is located at latitude 38.054°N and longitude 117.355°W (4,212,299N, 468,856E, UTM Zone 11, NAD83). The eastern boundary lies approximately 5 km west of Tonopah, Nevada, as shown in Figure 4-2. The elevation of the Property ranges from 1,813 meters above sea level (msl) along the southeastern boundary to 1,526 msl along the northern boundary. The Esmeralda-Nye County line runs northwest to southeast, skirting the southwestern edge of Tonopah.

RESPEC

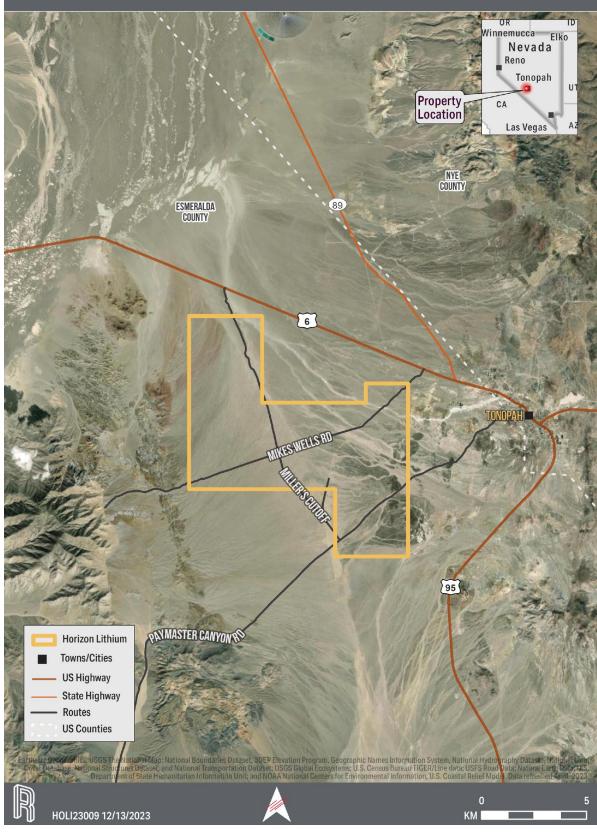


Figure 4-2. Property Location Map.

4.2 MINERAL RIGHTS

The Property comprises 839 unpatented lode mineral claims registered with the BLM and Esmeralda County under the name FMS Lithium Corporation. The claims were formally located between January 13 and 27, 2022. Appendix A lists the claims, claim locations, and associated claimants, and Figure 4-3 shows the land tenure map.

Rights associated with mining claims date back to the Mining Law of 1872, as amended. When properly staked, the claimant has the right to develop and extract the mineral deposit, subject to the rules and regulations for mining and mineral related activities within the state of Nevada. The right does not extend to exclusive right of the surface but instead to use only that portion of the surface of the claim as required for all purposes incident to the mining and removal of the mineral [United States Congress, 1872]. To maintain rights to the mineral potential of the property, an annual fee of \$220 CAD per claim is required to be paid to the federal United States government.

On September 27, 2022 (Horizon Effective Date), Pan American entered into a property option agreement (Horizon Option Agreement) with FMS and Horizon, pursuant to which Pan American was granted the right to acquire a 100 percent interest in the Property. Pursuant to the terms of the Horizon Option Agreement, Pan American has the option to acquire a 100 percent interest in the Property from Horizon in consideration for completing a series of cash payments and issuances of common shares in the capital of the Company (Common Shares), in accordance with the following schedule presented in Table 4-1.

Deadline	Cash Payments	Common Share Issuances*
Initial Payment	US\$250,000	US\$2,000,000
First Anniversary of Receipt of Drill Permits Necessary for the Company to Undertake Exploration Drilling	US\$250,000	US\$3,000,000
Second Anniversary of Receipt of Drill Permits	US\$500,000	US\$4,000,000

Table 4-1. Horizon Option Agreement

*Common Shares to be valued based on the greater of the 20-day, volume-weighted average price (VWAP) of the Common Shares prior to the issuance of such Common Shares and the lowest price.

Pan American made the initial cash payment on October 11, 2022, and the initial Common Share issuance on October 17, 2022. Pan American made the 1 year anniversary cash payment and share issuance on December 14, 2022.

In addition, if, during the period beginning on September 27, 2022, and ending on the date that is five (5) years from the Horizon Effective Date, (A) Pan American completes 10 consecutive drillholes on the Property, which drillholes are comprised of at least 400 m of drilling and which drillholes have an average grade across the cumulative core of such drillholes of at least 750 ppm lithium, Pan American shall issue an additional US\$1,250,000 worth of Common Shares, and (B) if Pan American publicly discloses a NI 43-101 compliant technical report declaring a mineral resource estimate on the Property containing inferred mineral resources of 2 million tonnes or greater of LCE, Pan American shall issue an additional US\$3,750,000 worth of Common Shares, in each case such Common Shares being valued based on the greater of the 20-day VWAP of the Common Shares prior to the issuance of such

Common Shares and the lowest price permissible pursuant to the policies of the exchange(s) on which the Common Shares are then listed. As this TR contains a mineral resource estimate in respect of the Property of greater than 2,000,000 tonnes of inferred LCE resources, the filing of this TR by Pan American will trigger the requirement for Pan American to issue US\$3,750,000 worth of Common Shares to Horizon pursuant to the Horizon Option Agreement.

Pursuant to the Horizon Option Agreement, Pan American acts as operator of the Property and has full right, power and authority to do everything necessary or desirable to determine the manner of exploration for minerals on the Property and, without limiting the generality of the foregoing, has, among other things, (i) all powers and authorities necessary or desirable to enable it to carry out or procure the carrying out of all operations on the Property and (ii) the exclusive right to enter in, under or upon the Property and conduct operations and related activities on the Property, carry out surface and underground exploration of the Property for minerals (including, without limitation, conducting geological, geochemical and geophysical surveys and drilling programs and collecting bulk samples for metallurgical testwork), apply for and hold all permits, licenses and other approvals deemed necessary or appropriate by Pan American, bring upon and erect upon the Property buildings, plant, machinery and equipment, remove from the Property and dispose of reasonable quantities of minerals for the purpose of obtaining assays or making other tests and do such prospecting and exploration work on and under the Property as it considers necessary or desirable.

Pursuant to the Horizon Option Agreement, as operator of the Property, Pan American must, among other things (i) perform its operations in a prudent and workmanlike manner, with the degree of effort, skill and judgment that is in accordance with good U.S. exploration, construction, mining, processing and engineering practices, applicable laws and all agreements, permits and licenses relating to the Property and Pan American, (ii) apply for all necessary permits, licenses and approvals and comply with all applicable laws, (iii) indemnify, defend and hold harmless Horizon and its directors, officers, employees, agents or representatives from and against all claims arising from or relating to Pan American's conduct of operations, (iv) obtain and maintain (and cause its subcontractors to obtain and maintain) all risk casualty and property insurance of a total coverage amount of US\$3 million during the term of the Horizon Option Agreement and the performance of post-termination reclamation and clean up of the Property and (v) keep the Property legally effective and in good standing in accordance with applicable laws and make or cause to be made all filings, payments, reports and applications necessary to keep the Property legally effective and in good standing.

If the Horizon Option Agreement is terminated or expires without Pan American's exercise of the option, Pan American is solely responsible under the Horizon Option Agreement for reclaiming the Property and all lands covered thereby in accordance with applicable environmental laws, to the extent such reclamation is required by applicable environmental laws as a result of the operations conducted on the Property by Pan American, and to remove all buildings, equipment, machinery, tools appliances and supplies which Pan American places on the Property.

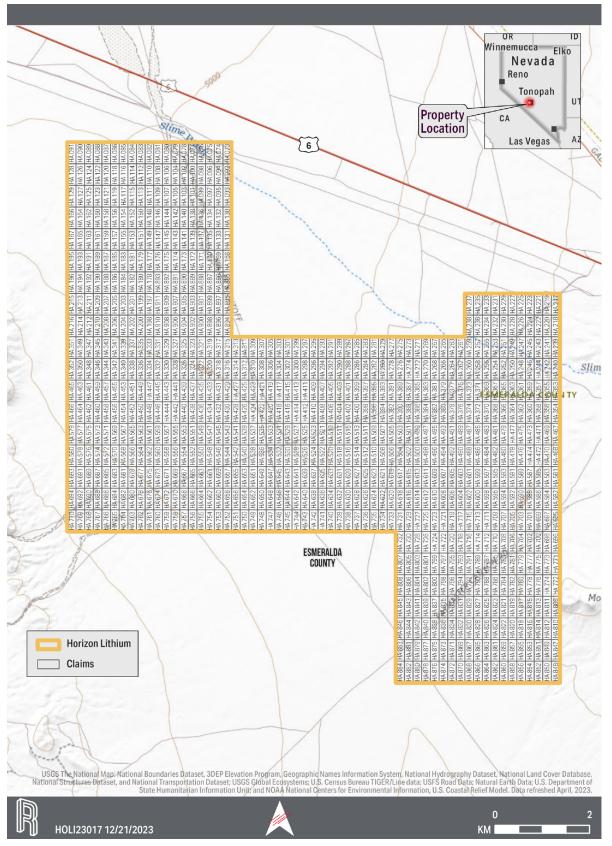


Figure 4-3. Land Tenure Map (Further Details Outlined in Appendix A).

4.3 ENCUMBRANCES OR RISKS TO PERFORM WORK ON PROPERTY

The Property is subject to the terms of the Horizon Option Agreement (See Section 4.2, Mineral Rights, for more details). As of the effective date of this TR, Pan American is not beholden to pay any royalties to any party or group. Current BLM permits and bonding associated with exploration of the Property include:

- / BLM Notice of Operations #N-101621
- / Associated reclamation bonds listed under Exploration Bond #NVB002795

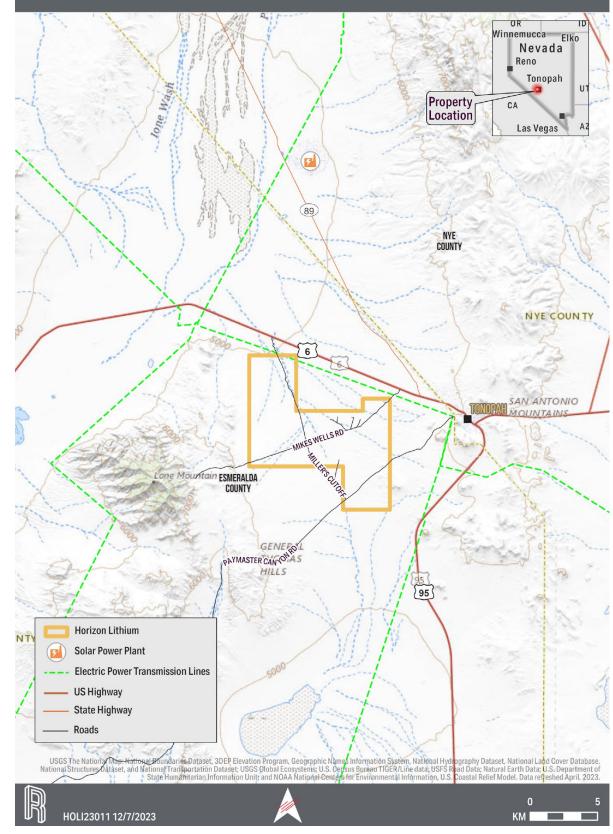
Additional permitting will be required to complete the recommended expansion and infill drilling. These would be limited to permits specific to the individual drill pad locations, as design and planning occurs, and associated surface disturbance bonding subject to the same reclamation requirements and hold periods in place during Phase I and Phase II.

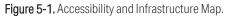
4.4 ENVIRONMENTAL LIABILITIES

The BLM Nevada State Office currently holds BLM Bond #NVB002795, with Pan American as the principal, in the amount of \$12,430. The bond provides surface reclamation coverage for operations conducted by the principal on the Property. The total disturbance for exploration work conducted to date is 4.80 acres. The exploration plan submitted to the BLM identifies environmental and reclamation commitments made by Pan American. Pursuant to the exploration plan submitted to the BLM, Pan American was required to plug all drillholes according to state and federal regulations and fill in all sumps upon completion of each hole. In addition, Pan American was required to perform reclamation work on the roads and drill pads. Access roads have been reclaimed following the completion of the drill program and disturbed areas have been reseeded with native plants. Upon the effective date of this TR, all required reclamation pertaining to exploration efforts thus far has been completed, pending inspection and approval by the BLM.

Aside from the bond and the associated reclamation obligations, the Property has no associated environmental liabilities of any sort, to the authors' knowledge.

17


5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, AND PHYSIOGRAPHY


5.1 ACCESSIBILITY

The Property is located approximately 5 km west of Tonopah, Nevada, and lies immediately south of US Hwy 6 and 95, a two-lane paved highway connecting northern Nevada and the Sierra Nevada of California to southern Nevada and points east. In the area of the Property, US Hwy 6 runs jointly with US 95, the major north-to-south highway connecting Reno/Interstate-80 and Las Vegas/Interstate-15. From US Hwy 6 and 95, the Property is readily accessible via three unimproved two-track routes, as shown in Figure 5-1. The nearest airports to Tonopah include Mammoth-Yosemite Airport (243 km), Reno-Tahoe International Airport (371 km), and Harry Reid International Airport in Las Vegas (350 km).

5.2 CLIMATE

Tonopah, Nevada, is designated by the Köppen-Geiger Climate Classification Scheme as cool-ariddesert [climate-data.org, 2022]. The warmest month of the year is July, with an average temperature of 25.5 degrees Celsius (°C), and the coolest month is January, with an average temperature of -2.4°C. The wettest month is February, with 27 millimeters (mm) of average precipitation, and the driest month is August, with an average precipitation of 6 mm. Given the dry, cool climate of the area, year-round mining operations are feasible. Figure 5-2 details Tonopah, Nevada's average monthly temperature and precipitation.

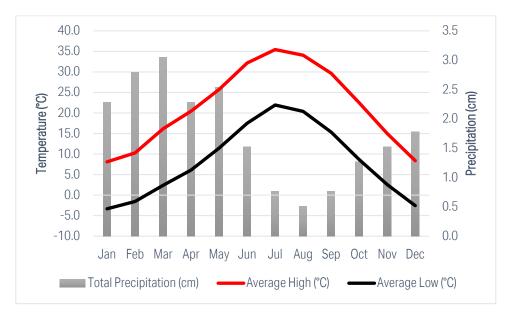


Figure 5-2. Monthly Climate Data, 1991–2021 [climate-data.org, 2022]

5.3 LOCAL RESOURCES AND INFRASTRUCTURE

A range of services are available in Tonopah, such as lodging, K-12 public schooling, restaurants, fuel, grocery, equipment rental and repair, and industrial supply. Frontier Medical Group LLC provides ambulatory and urgent care services in Tonopah. The nearest full-service hospital, Mount Grant General Hospital is located in Hawthorne, Nevada, 167 km to the northwest. Domestic water supply in Tonopah is generally sourced from a well field in Ralston Valley, and water for exploration drilling is purchased from the Tonopah Public Utility.

A 120-kilovolt overhead transmission line, maintained by Sierra Pacific Electric Company, runs parallel to US Hwy 6 (Figure 5-1) and the northern Property boundary. The population of Tonopah was 2,192 in 2020, with 12.1 percent of its workforce involved in the construction or mineral extraction industries [Data USA, 2022]. Operating base metal, precious metal, and industrial mineral mines can be found within 200 km of Tonopah, and multiple lithium exploration projects at varying stages of development are adjacent to the Property. In addition to the current mining and mineral exploration projects in the area, there is a history of mining and exploration in the Tonopah area, and as such, skilled labor and equipment are available regionally, as well as throughout Nevada.

Union Pacific Railroad has two main lines that transect Nevada. The northern route maintains stops at Reno, Flanigan, Winnemucca, Elko, and Wells, linking central California with Salt Lake City, Utah. The southern route runs through Las Vegas and connects Los Angeles, California, with Salt Lake City, Utah, and onward to destinations east [On Track North America, 2023].

5.4 TOPOGRAPHY AND VEGETATION

The Property consists of broad desert plains gently sloping to a central drainage trending generally to the north. The plains are moderately incised by a network of ephemeral streams and shallow arroyos. The elevation of the Property ranges from 1,813 msl along the southeastern boundary to 1,526 msl along the northern boundary. The Property is partly straddled on the east and west by rocky mountainous outcrops, as shown in Figure 5-3. These outcrops are the source of detrital material, which decreases in size with increasing distance, varying from boulders and cobbles to smaller, gravel-sized material toward the central drainage. Typical high-desert vegetation of low-growing sagebrush and drought-tolerant grasses exist throughout the Property. Feral horses, deer, coyotes, various small mammals, and desert-living reptiles live within or near the Property.

Figure 5-3. View of Horizon Lithium Property Looking West Down Mike Wells Road Toward Lone Mountain.

21

6.0 HISTORY

6.1 PRIOR OWNERSHIP

The Property is located on federal land managed by the BLM. FMS filed the 839 lode claims with the BLM in January 2022. The authors have not discovered any documented mineral claims for the Property predating January 2022.

6.2 EXPLORATION AND DEVELOPMENT HISTORY

No documented exploration and development history within the Property was uncovered by the authors. The Tonopah Mining District lies to the east, surrounding the town of Tonopah, and has a rich history of gold and silver mining. The initial discovery of gold and silver ore was made in 1900, followed immediately by a significant rush to the district. The town's peak production year was 1918, when 622,364 tons of ore, valued at more than US\$9 million, was produced [McCracken, 1990].

No historical lithium exploration on the Property is known by the authors.

7.0 GEOLOGICAL SETTING AND MINERALIZATION

7.1 REGIONAL GEOLOGY

The Great Basin of the western United States is a large endorheic watershed, meaning nearly all precipitated moisture is retained within the watershed boundaries, and surficial outflow to the ocean does not exist. The Great Basin extends from central Oregon in the north to the Imperial Valley of Southern California, as shown in Figure 7-1. The western edge is marked by the Sierra Crest, and the eastern boundary extends beyond the Great Salt Lake to the Wasatch Mountains of Utah. The Colorado Plateau and Rocky Mountains mark the eastern extent of the Great Basin. The Great Basin is part of the larger Basin and Range geological province, which is characterized by the alternating fault-bounded mountain ranges and elongated basins for which the province is named. This large expanse of the Basin and Range topography and the associated north-to-northeast trending fault systems are the result of broad crustal extension that began 16 to 17 Mya, as indicated by the age of basin deposits [Bonham and Garside, 1979]. The Property is situated along the western margin of the Basin and Range province and to the east of a zone of disrupted structure, known as the Walker Lane Tectonic Belt. The belt is a tectonic zone in eastern California and western Nevada composed of northwest-trending, strike-slip faults, and related north-to-south to northeast trending normal faults. Walker Lane accommodates part of the tectonic motion between the Pacific Plate and the North American Plate and separates the Sierra Nevada batholith from the Basin and Range physiographic province.

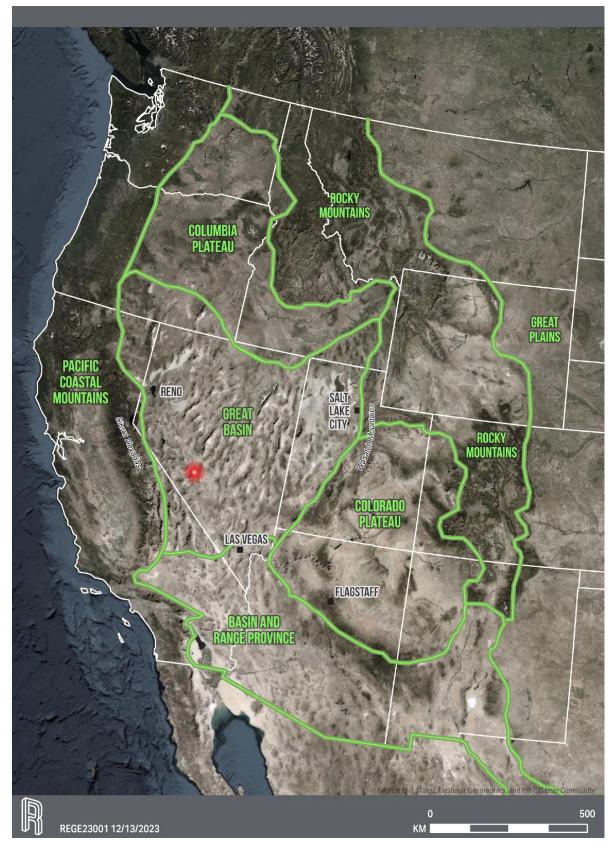


Figure 7-1. Regional Map Showing the Great Basin, Basin and Range Province, Adjacent Geological Provinces, and Location of the Property (in red) (Adapted From Danielson [2000] and McGuire [2015]).

7.2 LOCAL GEOLOGY

The Property is located within a southeastern appendage of Big Smoky Valley, an extensive network of interconnected, mid-late Miocene basins in southwestern Nevada. Much of the Property exists on a broad, alluvial outwash plain, Quaternary in age. The alluvial fan and pediment deposit that forms the plain is primarily silt, sand, gravel, and cobbles eroded from adjacent mountainous outcrops. To the west is the Lone Mountain complex, a Cretaceous pluton composed primarily of quartz monzonite intruding Proterozoic and Cambrian metasedimentary rocks [Maldonado, 1984]. To the east are the San Antonio Mountains of Oligocene and Miocene age, varying in composition from rhyolite to trachyandesite [Bonham and Garside, 1979]. Figure 7-2 shows the surficial geologic map of the local area. A network of ephemeral-stream deposits coalesces across the Property, forming a single primary drainage that trends north and northwest toward the interior of Big Smoky Valley.

The alluvial cover (*Qfp* in Figure 7-2) ranges in thickness from zero, in the eastern Property extents where *Qfp* onlaps outcrops of underlying units, to a thickness of at least 135 m based on Phase I drilling. The alluvial cover overlies the Siebert Formation (13 to 17 Mya), a thick sequence of sedimentary and pyroclastic rocks intercalated with minor trachyandesite flows and dikes. The bulk of the Siebert Formation comprises fluvial and lacustrine volcanic conglomerate, claystone, sandstone, and siltstone, and lesser amounts of subaerially and subaqueously deposited tuff [Bonham and Garside, 1979]. The Siebert Formation thickness varies considerably. Documented outcrops have been measured up to 450 m thick; however, beneath the Quaternary alluvium west and southwest of Tonopah, the Siebert Formation thickness likely approaches 900 m, based on a gravity survey conducted during the 1960s and referenced by Bonham and Garside [1979].

Local stratigraphy and estimated thicknesses of *Qfp* and the Siebert Formation (*Ts*) are shown in a cross section in Figure 7-3, adapted from Bonham and Garside [1979]. Bonham and Garside [1979] mapped a high-angle, normal fault that strikes to the northeast. The mapped portion of this fault terminates along the northern boundary of the Property and is described further in Section 7.5. The cross section in Figure 7-3 infers a continuation of this normal fault at depth and as being concealed by *Qfp*. The Quaternary fan and pediment deposits are believed to thicken westward as one approaches the basin center and the high-angle, normal fault. Results from Phases I and II drilling by Pan American support this theory as 135 m of *Qfp* were encountered in the westernmost drillholes, yet the underlying Siebert Formation outcrops near the easternmost drillholes.

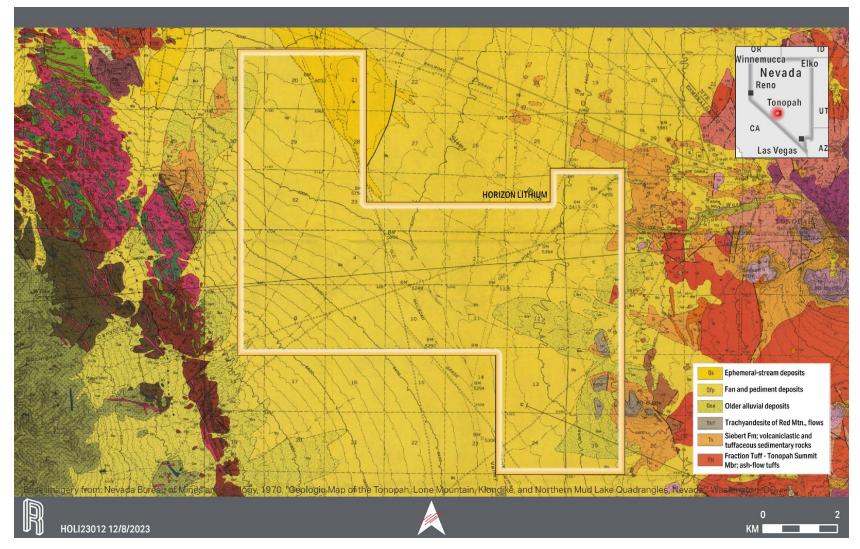
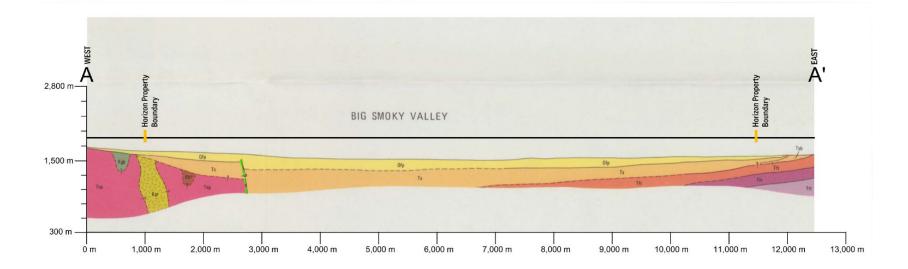



Figure 7-2. Geologic Map Showing the Property Boundary (Adapted From Bonham and Garside [1979]).

Base imagery from: Nevada Bureau of Mines and Geology, 1968–76. "Interpretative Cross Sections for the Tonopah, Lone Mountain, Klondike, and Northern Mud Lake Quadrangles, Nevada," Washington, DC. Geology by H.F. Bonham, Jr. and L.J. Garside.

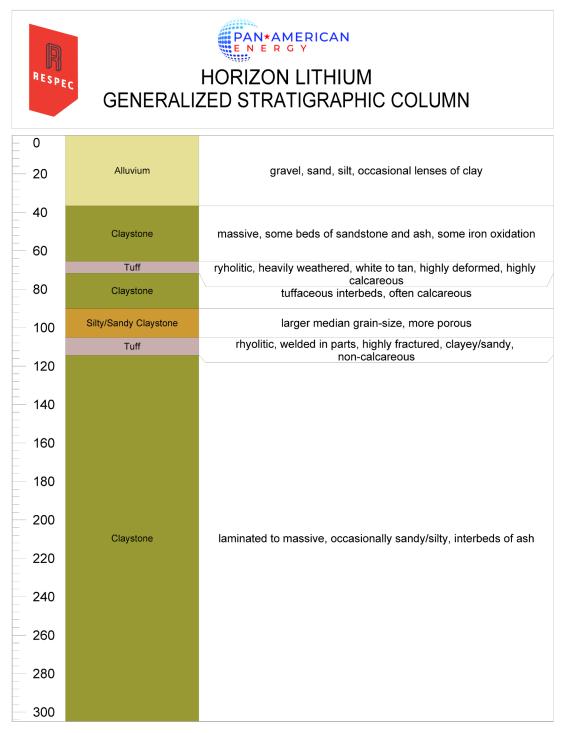
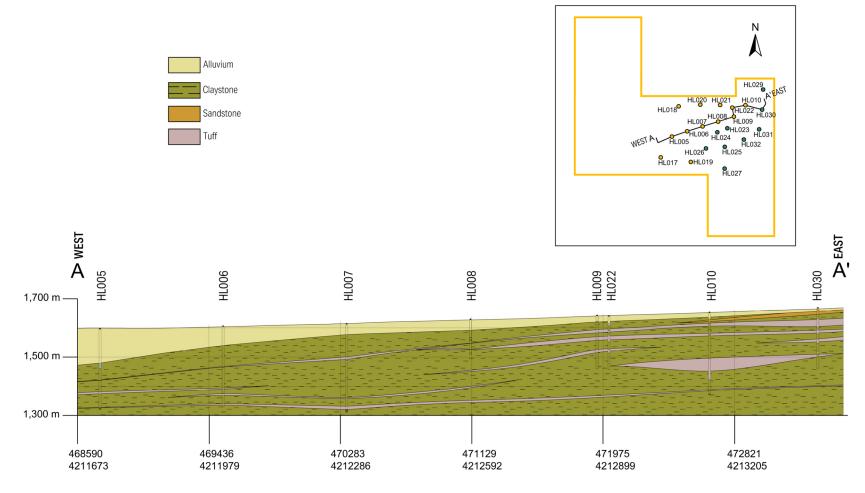


Figure 7-3. Cross Section Bisecting the Property on a Generally East to West Transect (Adapted From Bonham and Garside [1979]).

7.3 PROPERTY GEOLOGY


Descriptions in the following subsections are the lithologic units that occur within the Property boundaries, which are shown in Figures 7-4 and 7-5. Table 7-1 lists all units described and each unit's symbol and age ranges (if known). All descriptions in Sections 7.3.1 through 7.3.10 are sourced from Bonham and Garside [1979].

28

Figure 7-4. Generalized Stratigraphic Column of the Known Subsurface at Horizon Lithium. (Scale on left side is in feet.)

NOTE: Vertical exaggeration: 2X

HOLI23012 12/13/2023

Figure 7-5. Generalized Cross Section of the Property Produced From RESPEC's Geologic Model.

R E S P E C

Geologic Unit Age Symbol Period Descriptor (Mya) 0.01-Present **Ephemeral-Stream Deposits** Qs Quaternary Qfp 0.01-Present Fan and Pediment Deposits Qoa 2.58-0.01 **Older Alluvial Deposits** Ttrf 17.9-15.8 Trachyandesite of Red Mtn., flows Siebert Fm., volcaniclastic and tuffaceous Ts 17.0-13.0 sedimentary rocks Tsb 17.0-13.0 Siebert Fm., basal sedimentary breccia Fraction Tuff - Tonopah Summit Mbr., ash-Tertiary Tft 20.5-17.0 flow tuffs Tm 25.0-17.0 Mizpah Fm., predominantly flows Tsp 22.1 Silicic porphyry dikes and intrusive rocks Tonopah Fm., ash-flow tuffs and Ttt 34.8 sedimentary rocks Lone Mtn. Plutonic rocks - microcline Kgr not dated granite Cretaceous 110.0 Kgb Lone Mtn. Plutonic rocks - gabbro Harkless (?) Fm., hornfels and dark Cambrian Ch? 520.0-538.0 quartzite

Table 7-1. Geologic Units Present Within and Adjacent to the Property

*The presence of the Harkless Formation is uncertain.

7.3.1 EPHEMERAL-STREAM DEPOSITS

The Quaternary ephemeral-stream deposits (*Qs*) describe the transitional zone between upland fans or pediments and the low-relief areas consisting of stabilized dunes, small dry lakes, and playas. The deposits are predominantly sands and silts; the coarser debris is deposited along the various washes in the fans and pediments, and the clay-size fraction is concentrated in the playa areas. These deposits are distinguished by their position near valley floors. The age of the ephemeral-stream deposits is likely both Holocene and Pleistocene or approximately from 12,000 years ago to the present. This unit is generally equivalent in age to the fan and pediment deposits (*Qfp*).

7.3.2 FAN AND PEDIMENT DEPOSITS

Fan and pediment deposits (*Qfp*) describe the most observably extensive unit in the mapped area. Consisting primarily of a heterogeneous mixture of silt, sand, and gravel from local sources, some colluvium is included in areas near bedrock outcrops. The separation of older alluvial deposits from these fan and pediment deposits is based mainly on photogrammetric interpretations.

7.3.3 OLDER ALLUVIAL DEPOSITS

Older alluvial deposits (*Qoa*) are exposed adjacent to and extending out from bedrock areas and consist mainly of fan and pediment deposits of poorly sorted material ranging in size from boulders to clay. Zones of caliche-cemented conglomerate may also be present in the subsurface. The surface of the older alluvium is more dissected by small to large intermittent streams than is the surface of the younger fan and pediment deposits.

7.3.4 TRACHYANDESITE OF RED MOUNTAIN FLOWS

The trachyandesite of Red Mountain flows (*Ttrf*) is an assemblage of dark, sparsely porphyritic lavas and minor associated sedimentary, intrusive, and pyroclastic rocks that crop out mainly in the central and eastern San Antonio Mountains. Red Mountain is one of the vent areas for the trachyandesite lavas. *Ttrf* outcrops exist in the eastern extent of the Property, near Mount Butte. These augite-hornblende trachyandesite outcrops have been correlated with a trachyandesite flow contained within the Siebert Formation at Siebert Mountain.

7.3.5 SIEBERT FORMATION, VOLCANICLASTIC, AND TUFFACEOUS SEDIMENTARY ROCKS

The Siebert Formation (*Ts, Tsb*) contains a wide variety of sedimentary and pyroclastic rocks, in addition to scattered interbedded trachyandesite flows and dikes. The bulk of the formation includes epiclastic volcanic conglomerate, sandstone, siltstone, and lesser amounts of subaerially and subaqueously deposited tuff. Fine-grained tuff and tuffaceous sandstone are also present in the Siebert Formation; in some cases, the shard structure in these tuff beds is beautifully preserved. Some of the shale beds exhibit very shallow water features such as raindrop impressions, bird tracks, mud cracks, and ripple marks. In some areas, the basal sedimentary beds of the Siebert Formation were derived from the erosion of the underlying rock units. The Siebert Formation lies unconformably on several different rock units, especially the various members of the Fraction Tuff, the Mizpah Formation, and the volcanics of Lime Mountain.

The dominant environment of deposition was fluvial or lacustrine, although beach and delta deposits also exist. The margins of the ancient lake were shallow, and debris was supplied from erosion of surrounding volcanic outcrops, along with pyroclastic material from higher and more distant vents. The lake contained gastropods, ostracods, and fish. Several vertebrate and invertebrate fossils are present in the Siebert Formation.

7.3.6 FRACTION TUFF-TONOPAH SUMMIT MEMBER, ASH-FLOW TUFFS

One of two Fraction Tuff members (*Tft*) proposed by Bonham and Garside[1979], the Tonopah Summit Member predominantly consists of non-welded to weakly welded, vitric-lithic quartz latite to rhyolite tuff. Much of the Tonopah Summit Member has been hydrothermally altered. Pumice is abundant and typically constitutes 50 percent or more of the rock. In the vicinity of the Property, *Tft* overlies lava flows and breccias of the Mizpah Formation with an angular unconformity and is overlain uncomformably by the Siebert Formation. Within the Property boundaries, the presence of *Tft* is entirely subterranean aside from a single, small outcrop along the eastern boundary.

7.3.7 MIZPAH FORMATION, PREDOMINANTLY FLOWS

Because this unit comprises lava flows, intrusive phases, and volcaniclastic rocks, Bonham and Garside [1979] proposed the change from Mizpah Trachyte (*Tm*) to the more generalized name, Mizpah Formation. The various Mizpah volcanics crop out over a large area as intermittent exposures that extend from Tonopah north through the San Antonio Mountains. Within the Tonopah Mining District, these rocks are present in the underground workings. Likewise, within Property boundaries, the Mizpah Formation is only known in the subsurface overlain by the Fraction Tuff and underlain by the Tonopah Formation.

7.3.8 SILICIC PORPHYRY DIKES AND INTRUSIVE ROCKS

A swarm of quartz monzonite, granite, and rhyolite porphyry dikes (*Tsp*) is present over a wide area on the northeast and east sides of Lone Mountain. The dikes occur in a northwest-trending zone up to 5 km wide and over 12 km long. The dikes intrude Precambrian and early Paleozoic metasedimentary rocks and Mesozoic plutonic rocks. The dikes are overlain by the Tonopah Summit Member of the Fraction Tuff and by arkose and conglomerate of the Siebert Formation. The *Tsp* is displayed on the cross section (Figure 7-3) as occurring in the subsurface beneath the western Property boundary. The unit is shown to be cut by the inferred northeast trending normal fault, implying that a downthrown segment of *Tsp* exists east of the fault.

7.3.9 TONOPAH FORMATION ASH-FLOW TUFFS AND SEDIMENTARY ROCKS

In the Bonham and Garside [1979] geologic map, the Tonopah Formation (*Ttt*) is divided into two informal units: a lower unit that is mainly welded, silicic ash-flow tuffs and epiclastic volcanic sandstone; and an upper unit made up of rhyolite domes and flows. The Tonopah Formation is the lower unit shown on the cross section (Figure 7-3), overlain by the Mizpah Formation. No samples of the Tonopah Formation were found suitable for potassium-argon dating because of the pervasive hydrothermal alteration. Consequently, one zircon concentrate from the lower unit was used for fission track dating, yielding an age of 34.8 Mya +/- 4.2 million years.

7.3.10 LONE MOUNTAIN PLUTONIC ROCKS AND HARKLESS FORMATION

The Lone Mountain plutonic rocks (*Kgr* and *Kbg*) and the Harkless Formation hornfels/dark quartzite (*Ch*) are found outcropping west of the Property and form part of the Mesozoic and Paleozoic core of Lone Mountain. All three appear in the cross section (Figure 7-3), albeit in the subsurface. Much older than *Kgr* and *Kgb*, the Harkless Formation is Early Cambrian in age (538 to 520 Mya), based on the presence of trilobite fossils. Future exploration drilling by Pan American is unlikely to encounter these units.

The Phase I and II drillholes drilled by Pan American were collared within the surficial fan and pediment deposits (Qfp), which is referred to generally as alluvium. Beneath this surficial cover, all drillholes intercepted and then terminated within the Siebert Formation (Ts, Tsb). Figure 7-4 presents a generalized stratigraphic column of the sediments encountered by Phase I and II drilling. The Siebert Formation is highly variable both vertically and laterally across the Property. Although the dominant lithology is consistently dense claystone, occasional tuffaceous zones, scattered interbeds of sandstone, siltstone, tuff, ash, conglomerate, breccia, and various combinations of these were encountered in many drillholes and at varying depths. Expansive, homogeneous claystone intervals generally became more frequent from east to west, as exploration moved toward the basin center and away from the presumed source of larger grained, clastic material. Figure 7-5 depicts a generalized cross section produced from RESPEC's geologic model showing the predominant claystone lithology with lenses of, primarily, volcaniclastic material.

7.4 MINERALIZATION

Lithium mineralization occurs in the upper stratigraphic units throughout the southeastern portion of Big Smoky Valley. Local exploration primarily focuses on the claystone of the Siebert Formation. At the Property, lithium mineralization has been documented in both the Quaternary alluvium and the underlying Siebert Formation; however, mineralization in the Quaternary sands and gravels is minor and largely coincides with perched lenses of fine-grained sediment.

Pan American has defined a generally continuous block of lithium mineralization 3,000 to 5,000 m north to south, limited primarily by the northern Property boundary, 6,500 m east to west, constrained by the east Property boundary and open to the west, and ranging in thickness from 10 to 300 m. Lithium mineralization is widespread within the Siebert Formation. Dense claystone material is found exhibiting a range of colors, including dark to light gray, brown to tan, blue, and varying shades of green. To date, a strong correlation has not been observed between claystone color and lithium mineralization. The same can be said for bedding characteristics or lack thereof. Claystone material may be homogeneous, exhibiting no bedding features, whereas in other intervals, it may be finely laminated or interbedded with another lithology type. Other sediments within the Siebert Formation, however, such as sandstones and lenses of volcanic tuff, can generally be assumed to host lesser amounts of lithium.

7.5 GEOLOGIC STRUCTURE

Down-dropped blocks, or grabens, and their stationary or uplifted counterparts known as horsts are bounded by north-to-northeast trending normal faults and are characteristic of west-central Nevada, and the Basin and Range province at large. Such structures have been documented at properties adjacent to the Property. Interpreted normal faults at the neighboring Tonopah Flats project coincide with faults identified by Bonham and Garside [1979]. Only slightly further to the east and north, American Lithium Corp. has identified a set of four normal faults on the Tonopah Lithium Claims project, also striking to the northeast.

Similar faults can be assumed, with reasonable certainty, to have influenced the substrate at the Property. Evidence of this has been observed in the Phases I and II drillholes drilled by Pan American because the alluvial/Siebert Formation horizon exhibits a general deepening to the northeast, inferring that the fault mapped by Bonham and Garside [1979] continues through the Property. Most high-angle faults in the area, of which this is one, trend within 20 degrees east or west of north and are vertical or steep normal faults [Bonham and Garside, 1979]. Figure 7-6 illustrates the local faulting and how it relates geographically to the Phases I and II drillholes. Given lithium's highly mobile nature and propensity to leaching, further exploration and testing may reveal correlations between lithium grades and down-dropped blocks or certain faults acting as conduits in concert with paleo-groundwater flow for resource concentration.

Other structural features of the Property include folded beds of the Siebert Formation, which occur along the west edge of the San Antonio Mountains from just west of Tonopah, north for roughly 8 km. The folds are caused by settlement and compaction of lakebed sediments onto and around the pre-existing topography, rather than from tectonic uplift or the emplacement of any igneous body. Deformation of the Siebert Formation by folding occurs sporadically and to varying degrees in the area mentioned and, therefore, is not shown in Figure 7-6.

RESPEC

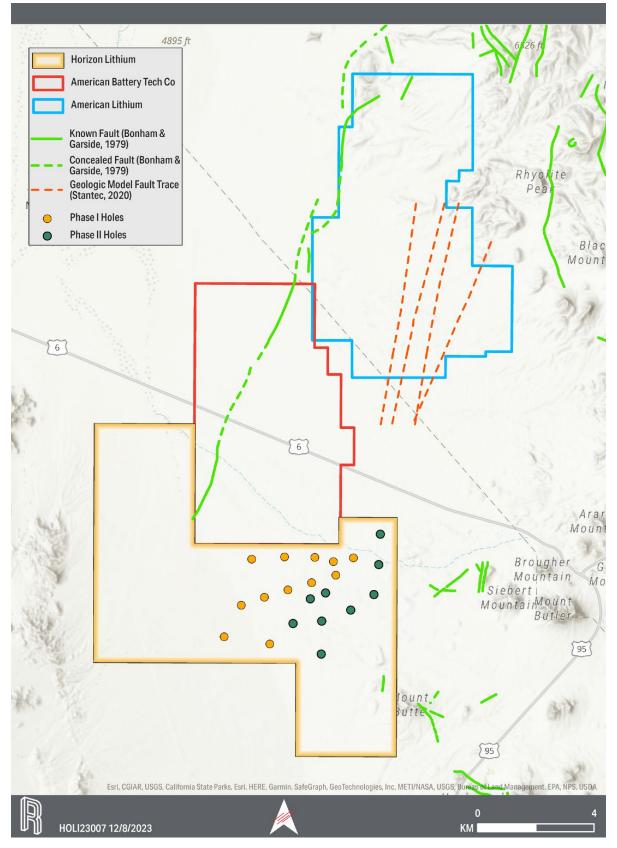


Figure 7-6. Map Illustrating Local Fault Structures and Phase I/Phase II Drillholes.

8.0 DEPOSIT TYPE

8.1 DEPOSIT TYPES AND GENETIC MODELS FOR LITHIUM

Concentrated lithium is found in three deposit types: continental brine, pegmatite, and clays. Most global production is currently sourced from lithium-rich brines, typically from arid, playa environments. West-central Nevada contains documented occurrences of both lithium brines and sediment-hosted lithium deposits, and the portion of Big Smoky Valley that hosts the Property is predominantly focused on sediment-hosted lithium.

The three genetic models for the enrichment of lithium in clays are the alteration of volcanic glass to lithium-rich smectite, precipitation from lacustrine waters, and incorporation of lithium into existing smectites. In each case, the diagenetic model is characterized by abundant magnesium, silicic volcanics, and an arid environment [Asher-Bolinder, 1991]. The ideal tectonostratigraphic setting is characterized by crustal extension and high sedimentation rates, as is the case in the Great Basin of the western United States. Such crustal extension is typically a precursor for the formation of closed basins, whether through tectonic or caldera origins, which, when coupled with an arid environment, become highly conducive to the precipitation and concentration of minerals. The model provided by Asher-Bolinder [1991] is included in the United States Geological Survey Open File Report 91-11A, Model 251.3 [Orris and Bliss, 1991] and provides the most accurate and widely cited information pertaining to lithium enrichment in smectites of closed basins.

8.2 MINERAL SOURCES AND ENRICHMENT

Multiple sources for lithium emplacement exist, or have existed, within and around the Property. These sources are illustrated in Figure 8-1 and include the following:

- / Ash flows move down the slopes of local volcanoes and into the depositional environment.
- / Ash fall from nearby volcanic activity is aerially deposited.
- / Erosion of surrounding volcanic rocks deposits volcaniclastic debris.
- / Hydrothermal fluids heated and mineral-enriched by deep heat sources interact with basin fill material.
- *I* **Evaporation** of confined basin waters induces precipitation and concentration of minerals, which are then deposited in lake bottom sediments.

The Siebert Formation experienced repeated episodes of lithium emplacement through a wide variety of processes. Volcanic glass in the form of ash, volcaniclastic debris emplaced through erosion, lithium-rich hydrothermal fluids at or below the surface, and circulation or evaporation of mineral-rich meteoric water likely all played a role in the enrichment of Siebert Formation sediments.

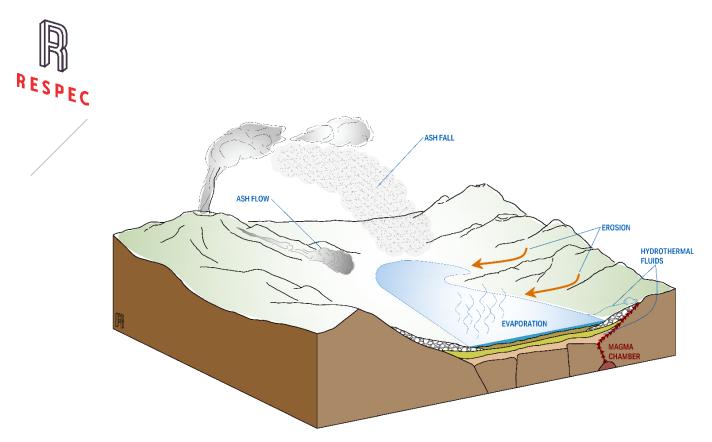


Figure 8-1. Illustration Showing Modes of Lithium Emplacement Believed to Have Occurred at the Property.

9.0 EXPLORATION

After 2022 drillholes completed by a neighboring property documented high grades of shallow lithium mineralization immediately north of the Property boundary, Pan American assessed the risk would be minimal to move directly to exploration drilling. Therefore, Pan American has completed no other forms of exploration on the Property other than drilling as of the date hereof.

10.0 DRILLING

In 2023, 21 diamond drillholes were drilled throughout two phases of exploration on the Property. RESPEC's role in the execution of the drilling program started with the evaluation of information pertaining to the Property and submission of exploration permit applications, followed by site visits to assess road access, delimit drill pads, and place survey stakes. RESPEC selected the drilling contractor, secured access to fresh water for the drill rigs, provided drilling supervision, and guaranteed sample collection at the drill site. RESPEC coordinated the subsequent transportation of materials to the designated core processing facility. RESPEC did not identify any drilling, sampling, or recovery factors that could materially impact the accuracy and reliability of the results.

10.1 PHASE I DRILLING

Phase I drilling started with drillhole HL010 on February 12, 2023, and ended with drillhole HL017 on April 20, 2023. The twelve locations were surveyed, staked, and spudded during this phase, and are shown in Figure 10-1. KB Drilling Co. (KB) was the contractor selected to carry out the drilling program. KB used conventional rotary drilling methods to reach the base of the Quaternary alluvium and advance HWT-size (114.3 mm OD) steel casing. Upon encountering semi-lithified sediments, or when this encounter was anticipated, KB transitioned to HQ-size wireline drilling. KB used a truck-mounted Atlas Copco -14 drill equipped with 240-horsepower engines.

Every drillhole on the Property was cased to levels near the top of the Siebert Formation. Coring was performed using 5-foot (ft)-long HQ (88.9 mm OD) steel rods with the aid of standard rig wireline, overshot assemblies equipped with lifting dogs and spearheads, inner barrels, and core catchers. KB mixed fresh water with EZ-MUD-type polymer emulsions as drill mud, circulated through the drill string assembly from a mud pit at the surface, and maintained the steel pipe threads with non-metallic lubricants.

Formation samples were lifted to the surface using the overshot assembly and wireline mounted on the rig. Rod handlers extracted core samples with the core barrel secured on a steel frame, positioned parallel to the ground surface, using a combination of high-pressure water and HQ pump-out adapters. Depth intervals, core run numbers, and core recovery (as a fraction) were scribed on wooden blocks and inserted into core boxes at the end of every core run.

Core samples were transferred and kept inside wax-impregnated HQ boxes labeled with borehole identifiers, depth intervals, box numbers, and project titles. KB transferred responsibility of the core to RESPEC geologists at the end of every 12-hour shift. Upon termination, boreholes were abandoned by pumping a bentonite-grout mixture to within 4.57 m (15 ft) of the surface. A cement plug was then added to cap the hole. Drillhole locations were marked with survey stakes.

Table 10-1 summarizes the Phase I drilling program with borehole identification numbers, UTM coordinates, drilling dates, surface elevations, casing depths, top of the Siebert Formation depths, total Siebert Formation cored, and termination depths.

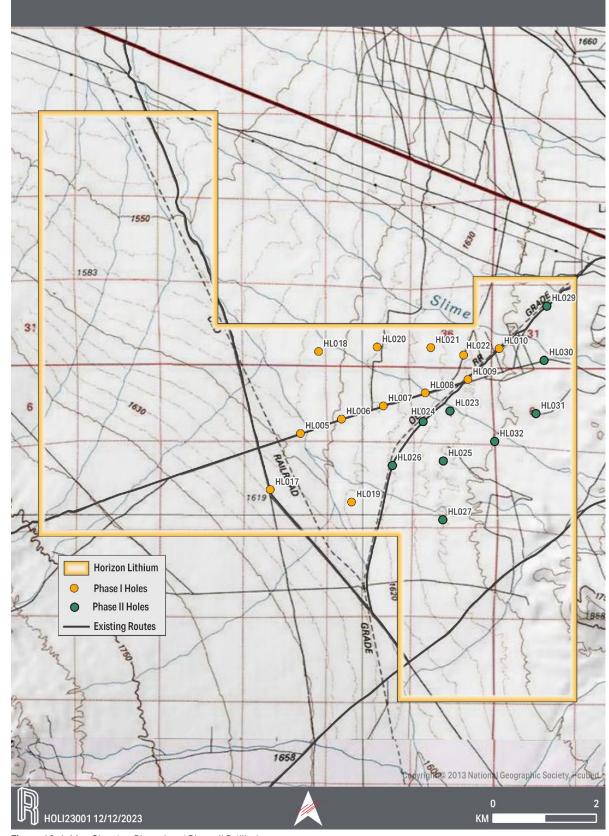


Figure 10-1. Map Showing Phase I and Phase II Drillholes.

ID	Start Date	End Date	UTM NAD83 E (m)	UTM NAD83 N (m)	Surface Elevation (m)	Casing (m)	Top of Siebert Formation (m)	Cored Siebert (m)	Top Depth Sampled (m)	Bottom Depth Sampled (m)	Total Depth (m)
HL010	February 12, 2023	February 21, 2023	472562.7	4213414.7	1,653.2	18.3	22.3	279.2	21.0	301.4	301.4
HL009	February 22, 2023	February 26, 2023	471959.5	4212820.3	1,642.6	21.3	21.0	161.8	18.0	182.9	182.9
HL022	February 26, 2023	March 1, 2023	471875.9	4213289.8	1,640.7	21.3	27.1	156.2	27.1	183.3	183.3
HL008	March 2, 2023	March 9, 2023	471132.1	4212558.4	1,629.5	21.3	37.6	91.6	38.5	129.2	129.2
HL021	March 10, 2023	March 13, 2023	471238.9	4213431.3	1,629.2	30.5	29.0	153.9	30.5	182.9	182.9
HL020	March 14, 2023	March 20, 2023	470201.6	4213444.5	1,611.5	24.4	22.6	159.7	22.7	182.3	182.3
HL018	March 20, 2023	March 22, 2023	469070.1	4213358.0	1,596.5	45.7	*	*	27.1	49.4	49.4
HL007	March 22, 2023	March 29, 2023	470321.4	4212307.8	1,613.9	36.6	36.6	267.6	36.6	304.2	304.2
HL006	March 29, 2023	April 4, 2023	469513.2	4212053.3	1,606.0	48.8	65.2	211.5	65.5	276.8	276.8
HL005	April 6, 2023	April 10, 2023	468717.5	4211775.2	1,597.2	30.5	136.6	140.2	62.8	276.8	276.8
HL019	April 11, 2023	April 15, 2023	469705.8	4210448.6	1,602.0	30.5	133.5	79.2	76.2	212.8	212.8
HL017	April 16, 2023	April 20, 2023	468133.2	4210689.9	1,621.5	45.7	**	**	**	**	167.0

. .

* HL018 was plugged and abandoned after drilling 49.4 m because of repeated drilling difficulties (primarily stuck drilling rods). The Siebert Formation was not encountered.

** HL017 was abandoned after drilling significant thicknesses of alluvium and breccia. No Siebert Formation was positively identified in HL017, and no geochemical samples were collected.

10.2 PHASE II DRILLING

Phase II drilling started with drillhole HL023 on May 15, 2023, and ended with drillhole HL029 on July 19, 2023. Nine locations were surveyed, staked, and spudded during this phase (Figure 10-1).

KB continued to operate as the drilling contractor for the Property and followed the same protocols described for Phase I. KB performed REFLEX downhole surveys with gyroscope slim tools on five Phase II drillholes to check verticality. Table 10-2 summarizes the Phase II drilling program with borehole identification numbers, UTM coordinates, drilling dates, surface elevations, casing depths, top of the Siebert Formation depths, total Siebert Formation cored, and termination depths.

ID	Start Date	End Date	UTM NAD83 E (m)	UTM NAD83 N (m)	Surface Elevation (m)	Casing (m)	Top of Siebert Formation (m)	Cored Sieber (m)	Top Depth Sampled (m)	Bottom Depth Sampled (m)	Total Depth (m)
HL023	May 15, 2023	May 19, 2023	471613.4	4212210.3	1,638.3	39.6	39.2	265.0	39.2	304.2	304.2
HL032	May 20, 2023	June 11, 2023	472475.5	4211621.2	1,655.4	94.5	39.3	143.6	39.3	182.9	182.9
HL024	May 29, 2023	June 4, 2023	471092.1	4212003.2	1,630.7	27.4	45.1	259.7	45.1	304.8	304.8
HL025	June 11, 2023	June 17, 2023	471481.3	4211241.8	1,642.3	48.8	50.3	163.1	50.3	213.4	213.4
HL026	June 17, 2023	June 23, 2023	470496.9	4211156.5	1,624.6	42.7	67.1	237.7	67.1	304.8	304.8
HL027	June 24, 2023	June 27, 2023	471471.5	4210104.5	1,642.6	45.7	82.9	61.9	82.9	144.8	144.8
HL031	June 29, 2023	July 8, 2023	473276.0	4212158.4	1,667.6	15.2	7.3	206.0	4.0	213.4	213.4
HL030	July 8, 2023	July 15, 2023	473434.0	4213188.0	1,668.8	15.2	4.7	202.5	4.7	207.3	207.3
HL029	July 16, 2023	July 19, 2023	473485.7	4214236.3	1,667.0	12.2	11.6	202.7	9.1	214.3	214.3

10.3 RESULTS

Twenty-one drillholes totaling 4,538.6 m were drilled at the Property from February 12, 2023, to July 19, 2023. In Phase I, 2,448.9 m were drilled, in Phase II, 2,089.7 m were drilled.

The achievements of the drilling program are summarized in Table 10-3. The average surface elevation of spudded drillholes was 1,632.4 m. Depths to the base of the Quaternary alluvium were 46.3 m on average, with a maximum depth to a confirmed intersect with the Siebert Formation of 136.6 m in HL005. The average length of the HWT casing string used during the entire program was 30.5 m. The shortest HWT drill string used was 12.2 m in HL029. The shortest cored section was completed in HL027 (61.9 m) and the longest cored interval in HL010 (279.2 m).

	Surface Elevation (m)	Elevation Depth		Cored Siebert (m)	Total Depth (m)
Maximum	1,668.8	94.5	136.6	279.2	304.8
Average	1,632.4	34.1	46.3	181.2	216.1
Median	1,630.7	30.5	37.6	163.1	212.8
Minimum	1,596.5	12.2	4.7	61.9	49.4

The deepest drillhole advanced to 304.8 m and was still within the Siebert Formation without reaching the base of the formation. The average termination depth for the drilling program was 216.1 m.

HL018 and HL017 were terminated at depths, presumably above the Siebert Formation contact. HL018 encountered persistent drilling difficulties while drilling the lower alluvium. After repeatedly dealing with stuck rods, the drilling of HL018 was terminated at 49.4 m. HL017 drilled significant thicknesses of alluvium and breccia before abandoning the drillhole at 167.0 m.

All drillholes drilled at the Property were planned and executed as vertical holes. KB performed REFLEX surveys with slim gyroscope tools on five Phase II drillholes to assess deviation from vertical. Of the five drillholes surveyed, deviation from vertical never exceeded 0.94 degrees. Although deviation was never a concern, the REFLEX tool was used to verify this.

Table 10-4 lists the peak lithium grades found on the Property. Of the 20 drillholes analyzed, 16 contained lithium grades greater than 300 ppm. The highest lithium intersect in the Property was encountered in HL008 at a depth of 120.9 meters, with a grade of 2040.0 ppm. Drillholes HL005, HL006, HL007, HL020, HL021, HL024, and HL026, which surround HL008, contained peak grades greater than 1000 ppm.

Table 10-4. Peak Grades of Lithium Encountered per Drillhole

	Interva	al Sampled		Peak Lithium Value						
ID	Top Depth	Bottom Depth	ppm	From (m)	To (m)	Thickness (m)				
HL008	38.5	129.2	2,040.0	120.9	121.6	0.7				
HL006	65.5	276.8	1,810.0	165.5	167.0	1.5				
HL005	62.8	276.8	1,785.0	224.3	225.8	1.5				
HL020	22.7	182.3	1,740.0	109.1	110.6	1.5				
HL024	45.1	304.8	1,695.0	75.6	77.1	1.5				
HL026	67.1	304.8	1,660.0	126.2	127.7	1.5				
HL007	36.6	304.2	1,485.0	257.5	259.1	1.6				
HL021	30.5	182.9	1,300.0	109.1	110.6	1.5				
HL023	39.2	304.2	976.0	164.0	165.5	1.5				
HL022	27.1	183.3	960.0	179.5	181.0	1.5				
HL010	21.0	301.4	928.0	74.1	75.7	1.5				
HL019	76.2	212.8	752.0	118.9	120.4	1.5				
HL029	9.1	214.3	731.0	213.7	214.3	0.6				
HL025	50.3	213.4	543.0	157.9	159.4	1.5				
HL009	18.0	182.9	459.0	112.5	114.0	1.5				
HL032	39.3	182.9	380.0	120.7	122.5	1.8				
HL031	4.0	213.4	249.0	25.3	26.8	1.5				
HL018	27.1	49.4	204.0	48.5	49.4	0.9				
HL027	82.9	144.8	98.2	93.6	95.1	1.5				
HL030	4.7	207.3	68.4	145.1	146.6	1.5				

10.4 INTERPRETATIONS

The casing of the Quaternary alluvium at depths near the top of the Siebert Formation was a good measure to control borehole stability, maintain acceptable core recovery percentages, and obtain maximum drilling performance of the rig.

Fresh water and EZ-MUD polymer emulsions used in the program were effective and helped keep the boreholes clean when the drilling mud was circulated through the drill string at the end of every core run. Although drillholes were planned to collect cores from intervals of the Siebert Formation, holes HL018 and HL017 were sampled exclusively from the Quaternary alluvium.

Lithium grades were found to be disseminated across the entire thickness of the claystone intervals sampled. All 20 drillholes analyzed contained lithium, regardless of drillhole spacing or position of the assay sample within the stratigraphic succession of claystone and tuffaceous rocks. Because of the disseminated nature of the claystone-hosted lithium, the orientation of the mineralization, and the relationship between sample length, the true thickness of mineralization is unknown.

11.0 SAMPLE PREPARATION, ANALYSES, AND SECURITY

11.1 SAMPLE PREPARATION AND ANALYSIS

Sample selection started at the first occurrence of the Siebert Formation claystone or equivalent sedimentary units of the same rock formation. Interval spacing consisted of approximately 5-ft incremental depth breaks to total depth (TD), except where significant changes in mineralization were visible. Of the 3,443.32 m of core drilled (including unrecovered zones), 2,303 samples were prepared for the Property, resulting in an average interval length of 1.53 m.

Sample interval selection was followed by the removal of cores from their boxes, starting from the top of the Siebert Formation and continuing to TD. The samples were then split longitudinally into $\frac{1}{3}$ and $\frac{1}{3}$ slabs using a precision rock saw mounted on a stable frame and cooled with a continuous stream of fresh water sourced from a local well. Each $\frac{2}{3}$ core slab was returned to its original box, and the remaining $\frac{1}{3}$ pieces were placed inside double-lined, clear polyethylene tube bags. The sample bags were secured with staples at each end, with one stapled end containing a unique paper tag identifier. All bags were numbered with thick permanent markers and placed inside large super sacks.

RESPEC geologists inserted quality assurance (QA) and quality control (QC) materials (certified reference pulps, blanks, and ¼ core field duplicates) to evaluate bias within the dataset. The insertion rate targeted at the beginning of the sampling program was 5 percent.

Large sample lots contained a detailed chain-of-custody form completed by RESPEC to document and record information regarding the transfer of materials, location of samples, analytical tests requested to be performed by the laboratory, and final destination of pulps and coarse rejects. The super sacks were loaded onto the flatbeds of pickup trucks using an all-terrain forklift-type telehandler, secured with ratchet straps, and transported from the core processing facility in Tonopah to ALS USA in Reno, Nevada (ALS).

The materials dispatched by RESPEC and the order numbers provided by ALS are summarized in Table 11-1.

Table 11-1. Summary of Sample Batches Dispatched to ALS

Batch Number	Quantity	Order Number
1	104	CI23052874
2	162	RE23058515
3	151	RE23061169
4	201	RE23076096
5	132	RE23084284
6	134	CI23094613
7	68	CI23094617
8	138	CI23101592
9	135	RE23106234
10	146	CI23141054
11	217	CI23154343
12	175	CI23165836
13	165	CI23183285
14	118	CI23195902
15	141	CI23195915
16	234	CI23201964

ALS, located at 4977 Energy Way in Reno, Nevada, is an ISO/IEC 17025 accredited testing laboratory with more than 40 years of experience providing comprehensive geochemical solutions globally and is independent of Pan American.

ALS performed a preliminary coarse crush of all dried samples to 70 percent passing less than 6 mm (method DRY/CRU-21), followed by a fine crush to 70 percent passing less than 2 mm, a subsequent riffle split off 250 grams (g), and a final pulverization of the split to 85 percent passing 75 microns (µm) (method PREP-31).

The resulting pulps were subsampled to undergo a four-acid digestion process paired with inductively coupled plasma mass spectrometry (ICP-MS) analyses for 48 elements (method ME-MS61). ALS provided in-house QC measures by inserting suitable blanks, standards, and pulp repeats into the sample stream. QC certificates of analysis and laboratory results were issued for every sample lot. RESPEC evaluated the laboratory certificates and ME-MS61 results before the issuance of this TR, and they were found to be acceptable.

ALS disposed of the coarse rejects and returned pulp reject material to RESPEC for preparation and submission to a check laboratory.

Activation Laboratories Ltd. (Actlabs), located at 41 Bittern Street in Ancaster, Ontario, is an ISO/IEC 17025 and a CAN-P-1579 accredited testing laboratory with more than 35 years of experience

providing comprehensive analytical testing in the geochemical and geo-metallurgical market globally. Actlabs served as the check laboratory for the Property and is independent of Pan American.

Actlabs crushed the coarse blanks to 80 percent passing 2 mm, followed by a rifle split off 250 g, and a final pulverization of the split to 95 percent passing 105 μ m (method RX-1). The resulting pulps were subsampled to undergo a four-acid digestion and analyzed using inductively coupled plasma optical emission spectroscopy and mass spectrometry (ICP-OES/ICP-MS) (method Ultratrace 4). QC certificates of analysis and laboratory results were issued for the check pulp repeats. RESPEC evaluated the laboratory certificates and Ultratrace results before the issuance of this TR, and they were found to be acceptable.

11.2 QUALITY ASSURANCE/QUALITY CONTROL

RESPEC uses QA/QC measures that enable the assessment of sample accuracy, precision, and contamination sources, aimed at ensuring high-quality data.

RESPEC geologists used CRMs obtained from Moment Exploration Geochemistry LLC (MEG). MEG is an independent laboratory in Lamoille, Nevada, that distributes CRMs with known mineral content. RESPEC used two sets of lithium standards, two blank pulps, and one coarse-grained blank from naturally occurring geologic materials available from MEG.

CRMs, field duplicates, and check laboratory repeats were assigned unique sample numbers and paper tag identifiers to enable subsequent data correlation with geochemical assay result reporting. The QC and sample preparation program implemented for the Property before analyses of check laboratory repeats achieved an insertion rate of 5.12 percent. This rate increased to 7.82 percent when Actlabs completed testing of the check pulps and the CRMs provided to them, as shown in Table 11-2.

47

Table 11-2. Summary of QA/QC Program for Horizon Lithium

	1
CRM Lithium Standards	51
Analyses by ALS	47
Analyses by Actlabs	4
Duplicates	25
Rig Duplicate	25
CRM Blanks	49
Pulp Blanks by ALS	36
Coarse Blanks by ALS	10
Coarse Blanks by Actlabs	3
Check Pulps	55
Pulp Repeats	55
Total Drillhole Samples	2,303
Total QA/QC Materials	180
Grand Total	2,483
Overall QA/QC Insertion Percentage	7.82

11.2.1 LITHIUM CRM STANDARDS

RESPEC geologists used a combination of two CRMs for QA/QC purposes. Standards MEG.Li.10.14 and MEG.Li.10.15, listed in Table 11-3, are certified to contain an average of 813.9 and 1,606.4 ppm of lithium, respectively.

ID	Drill Year	Insertion Count	Certified (ppm)	Standard Deviation (ppm)	Upper Limit	Lower Limit
MEG.Li.10.14	0000	26	813.9	72.3	958.5	669.3
MEG.Li.10.15	2023	25	1,606.4	104.8	1,816.0	1,396.8

The acceptable reporting range in the mineral industry for CRMs is the 95 percent confidence limit, which is the certified value ±2 standard deviations. Control charts of the materials tested against the certified values are included in Figures 11-1 and 11-2.

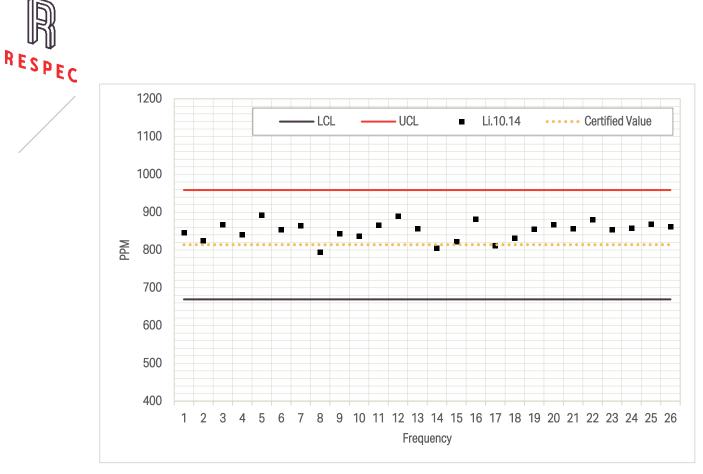
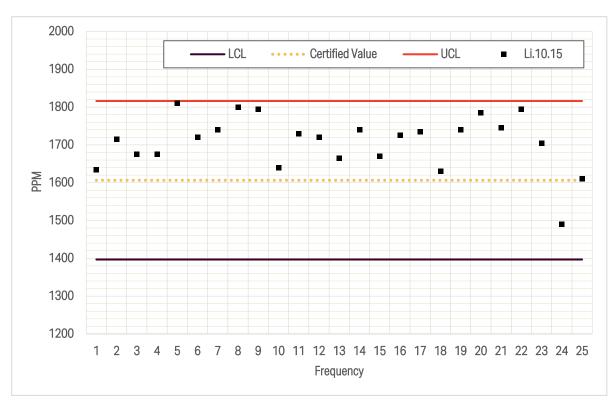



Figure 11-1. CRM Standard MEG.Li. 10.14 Geochemical Laboratory Results.

Figure 11-2. CRM Standard MEG.Li. 10.15 Geochemical Laboratory Results.

All samples containing the standards analyzed fall within the 95 percent confidence interval, referenced above as the upper confidence (UCL) and lower confidence (LCL) limits. Both standards' high, average, and low range values are within the expected range, as shown in Table 11-4.

ID	A	lliah	1	Dates U	sed	Fellures
ID	Average	High	Low	First	Last	Failures
MEG.Li.10.14	850.6	892	794	February 24, 2023	July 20, 2023	0
MEG.Li.10.15	1721.3	1810	1630	February 24, 2023	July 20, 2023	0

Table 11-4. Observed Average Values, Ranges, and Failure Counts of CRM Standards Analyzed

11.2.2 CRM BLANKS

RESPEC used a combination of two reference blank pulps and a coarse blank from MEG to monitor contamination. Pulps SiBLANK.21.01, CaBLANK.17.13, and MEG.PRPBLK.19.12, listed in Table 11-5, were sourced from naturally occurring silica sands in Lake Mountain, Washington; crushed basalite blocks; and siliceous materials in Dayton, Nevada. The materials contain negligible amounts of lithium because the average crustal abundances for the element are approximately 20 ppm [Haynes, 2016].

Blank ID	ODM	Counts			Range		Dates Used		
	CRM Type	Samples	Warning Limit	Average	High	Low	Start	End	
SiBlank.21.01	Pulp	17	4.07	1.90	3.50	0.80	February 24, 2023	April 6, 2023	
CaBlank.17.13	Pulp	19	43.98	40.72	43.20	38.80	April 21, 2023	June 27, 2023	
MEG.PRPBLK.19.12	Coarse	13	45.24	41.40	44.00	39.7	June 27, 2023	July 29, 2023	

Table 11-5. Summary of CRM Blanks Tested for Horizon Lithium

MEG.PRPBLK.19.12 coarse blanks were intentionally introduced to assess Actlabs' preparation circuit, which includes crushing, splitting, and pulverization of materials before four-acid digestions with an ICP-MS finish.

ALS and Actlabs analyzed a combined total of 49 CRM blanks for the Property. RESPEC evaluated the results for failures based on warning limits calculated as the mean value for each CRM plus three standard deviations. Control charts for each certified blank are presented in Figures 11-3 through 11-5.

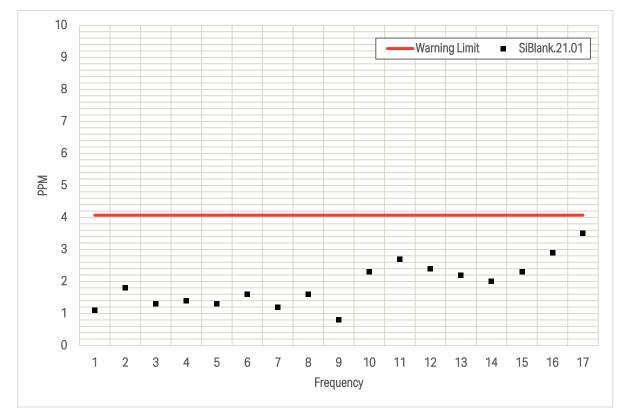


Figure 11-3. CRM Blank SiBlk.21.01 Geochemical Laboratory Results.

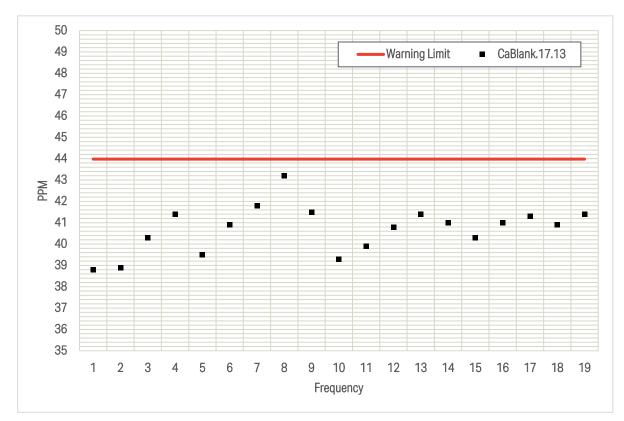


Figure 11-4. CRM Blank CaBlk.17.13 Geochemical Laboratory Results.

Figure 11-5. CRM MEG.PRPBLK.19.12 Geochemical Laboratory Results.

The blanks analyzed show acceptable adherence to the average crustal lithium abundances for the materials certified by MEG; however, Si.Blk.21.01 pulps appear to be best suited for QC analyses of the type conducted for the Property because of the relatively low concentrations of the element observed after ICP-MS testing.

11.2.3 FIELD DUPLICATES

For the 2023 sampling and QC program, RESPEC geologists randomly selected 25 field duplicates. Table 11-6 contains a summary of the field duplicate data statistics. Figure 11-6 presents a crossplot of the field duplicates plotted on the y-axis and the matching slabs on the x-axis. The linear regression model calculated for the pairs resulted in the equation of the line

y = 1.0038*x* + 3.6686

and an R square value of 0.9947.

A plot of the RPD, calculated as

RPD(mean) = 100 x [(Duplicate – Original) / (Mean of (Duplicate, Original)]

and evaluated against the mean of the paired values, is presented in Figure 11-7.

The good fit of the linear regression model and the *R square* value are good indicators that the ore variability in the samples is acceptable. However, the RPDs of pairs 842915/842914 = 26.2 percent and 843155/8431547.9 = 47.9 percent, which stand out as anomalies in Figure 11-7, were attributed to mineralogical or compositional variations at the core level and were not attributed to issues with the laboratory.

					,		
Duplicate Slab		Matchir	ng Slab	Mean Value	Differences		
ID	ppm	ID	ppm	ppm	RPD (mean)		
956409	15.2	956478	17.7	16.5	-15.2		
956309	25.8	956268	26.2	26.0	-1.5		
760704	52.2	956260	48.3	50.3	7.8		
870608	48.7	870689	55.1	51.9	-12.3		
842915	80.4	842914	61.8	71.1	26.2		
843155	101.5	843157	62.3	81.9	47.9		
843055	105.0	843061	111.0	108.0	-5.6		
956509	182.0	956498	197.5	189.8	-8.2		
870208	209.0	870185	213.0	211.0	-1.9		
870708	221.0	870717	223.0	222.0	-0.9		
870908	254.0	870929	241.0	247.5	5.3		
870808	288.0	870822	249.0	268.5	14.5		
842815	319.0	842814	348.0	333.5	-8.7		
870008	334.0	870009	337.0	335.5	-0.9		
956609	355.0	956590	319.0	337.0	10.7		
870508	378.0	870590	373.0	375.5	1.3		
870408	387.0	870586	401.0	394.0	-3.6		
870189	484.0	870171	470.0	477.0	2.9		
843455	621.0	843463	611.0	616.0	1.6		
870108	621.0	870116	625.0	623.0	-0.6		
870308	667.0	870377	676.0	671.5	-1.3		
869808	740.0	869794	742.0	741.0	-0.3		
869908	796.0	869920	785.0	790.5	1.4		
843355	893.0	843365	921.0	907.0	-3.1		
843255	1,030.0	843281	968.0	999.0	6.2		

Table 11-6. Summary of Field Duplicates From Analyses Performed by ALS

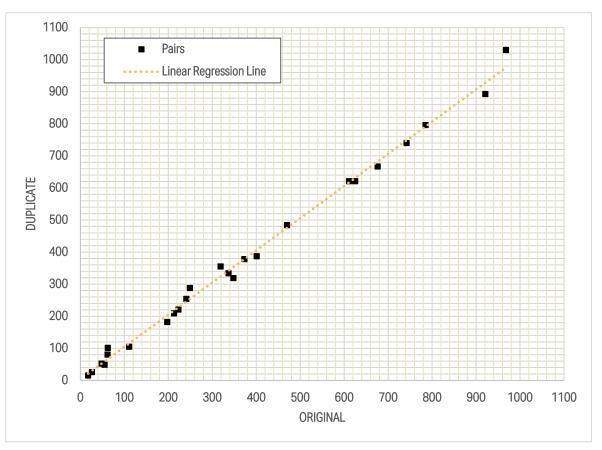


Figure 11-6. Crossplot of Field Duplicate Pairs for Horizon Lithium.

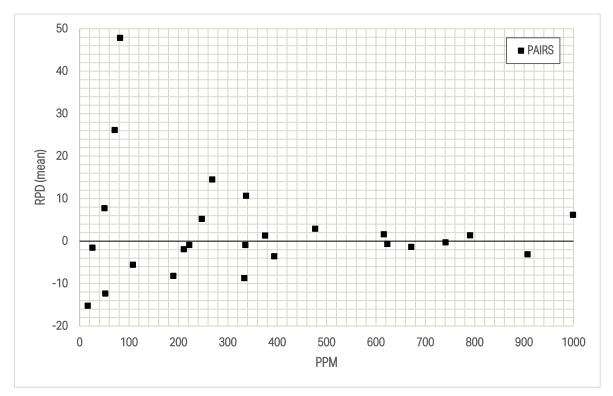


Figure 11-7. Relative Percent Difference (Mean) of the Field Duplicate Pairs.

11.2.4 CHECK LABORATORY REPEATS

Fifty-five pulp samples initially processed by ALS were selected for re-assay and shipped to Actlabs to undergo four-acid digestion with an ICP-MS finish. For this laboratory check, RESPEC geologists included a new set of CRMs from MEG and coarse-grained blanks intentionally inserted into the repeat lot to verify the crushing and pulverization methods employed by the laboratory. The QA/QC insertion rate achieved for laboratory repeats was 12.7 percent.

Pulps were sent at a rate of 9.9 percent of the 555 returned materials from ALS. Approximately 30 g of pulp were included in every sample. All samples were assigned new and unique sample tag identifiers. Tag numbers were recorded and cross referenced with the original ALS sample numbers for subsequent geochemical result reporting. Chain-of-custody forms were filled out, placed inside a crate, and shipped to Actlabs via certified UPS air cargo.

Table 11-7 contains a summary of the laboratory checks and matching pulp lithium parts per million, mean values for each pair, and the calculated RPDs with respect to the mean values.

Figure 11-8 is a crossplot of the laboratory checks on the y-axis and the matching pulps on the x-axis. The linear regression model calculated for the pairs resulted in the equation of the line

y=1.004x – 8.1953

and an *R square* value of 0.9079.

A plot of the RPD, calculated as

RPD(mean) = 100 x [(Duplicate – Original) / (Mean of (Duplicate, Original)]

and evaluated against the mean of the paired values, is presented in Figure 11-9.

The good fit of the linear regression model and the *R square* value are good indicators of acceptable correlation for the pulps analyzed. Sample pairs Actlabs 823807/ALS 870135 and Actlabs 823765/ALS 870103 were identified as anomalous. However, when evaluated relative to the overall sample population and considering that the *R square value* is still within the acceptable range, or greater than 0.90, these anomalies are not of concern.

RESPEC geologists performed sample tag and pulp verifications to determine systematic sources of error during the preparation of the check pulp samples and subsequent submission to Actlabs. The geologists determined that handling of pulps by RESPEC before shipment via air cargo to Ancaster, Ontario, was appropriate and that the tag identifiers recorded on inventory spreadsheets matched those documented in the chain-of-custody form given to Actlabs. RESPEC suggests that cross-sample contamination could have occurred earlier in the check laboratory program, starting when ALS completed testing of all materials and ending with the return and subsequent transport of pulps to Grand Junction, Colorado. Anomalous samples and notable outliers will be resubmitted for further analysis during future testing programs.

55

Failed check samples will be resubmitted for assay in future geochemical analyses for the Property.

 Table 11-7.
 Summary of Check Pulp Repeats Analyzed by Actlabs With Matching Sample Tag Numbers From ALS (Page 1 of 2)

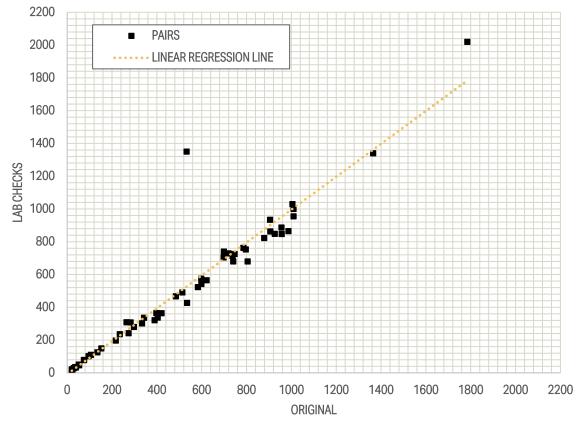

Actlabs		ALS		Mean	Differences
ID	ppm	ID	ppm	ppm	RPD (mean)
823763	19.1	842951	20.6	19.9	-7.6
823764	21.4	842946	22.6	22.0	-5.5
823773	21.8	842944	24.4	23.1	-11.3
823784	29.5	870159	30.0	29.8	-1.7
823805	35.5	842860	36.1	35.8	-1.7
823806	33.1	842889	39.5	36.3	-17.6
823772	46.2	842919	53.5	49.9	-14.6
823762	50.6	843053	51.6	51.1	-2.0
823783	77.7	870130	75.8	76.8	2.5
823792	79.1	870234	74.6	76.9	5.9
823758	102.0	843047	95.8	98.9	6.3
823766	110.0	870129	106.0	108.0	3.7
823785	125.0	843022	135.0	130.0	-7.7
823791	149.0	870221	152.5	150.8	-2.3
823781	197.0	843014	217.0	207.0	-9.7
823757	236.0	870217	235.0	235.5	0.4
823793	242.0	842983	274.0	258.0	-12.4
823756	309.0	870205	265.0	287.0	15.3
823777	280.0	843142	298.0	289.0	-6.2
823759	308.0	843023	283.0	295.5	8.5
823796	302.0	843300	334.0	318.0	-10.1
823761	336.0	843082	343.0	339.5	-2.1
823799	321.0	843088	390.0	355.5	-19.4
823798	337.0	843111	404.0	370.5	-18.1
823769	365.0	843240	398.0	381.5	-8.7
823768	364.0	843460	421.0	392.5	-14.5
823786	467.0	843143	485.0	476.0	-3.8
823782	427.0	843233	535.0	481.0	-22.5
823816	491.0	843180	514.0	502.5	-4.6
823794	523.0	843464	583.0	553.0	-10.8
823778	542.0	843192	599.0	570.5	-10.0
823774	575.0	843376	598.0	586.5	-3.9
823814	565.0	843209	622.0	593.5	-9.6

 Table 11-7.
 Summary of Check Pulp Repeats Analyzed by Actlabs With Matching Sample Tag Numbers From ALS (Page 2 of 2)

Actlabs		ALS		Mean	Differences
ID	ppm	ID	ppm	ppm	RPD (mean)
823776	704.0	843116	698.0	701.0	0.9
823801	680.0	843324	741.0	710.5	-8.6
823787	740.0	843173	699.0	719.5	5.7
823771	729.0	843262	720.0	724.5	1.2
823803	713.0	843346	738.0	725.5	-3.4
823813	725.0	843249	747.0	736.0	-3.0
823802	680.0	843353	805.0	742.5	-16.8
823804	763.0	843433	786.0	774.5	-3.0
823812	753.0	843473	797.0	775.0	-5.7
823788	823.0	843496	879.0	851.0	-6.6
823811	863.0	843500	906.0	884.5	-4.9
823779	848.0	843203	926.0	887.0	-8.8
823795	847.0	843493	957.0	902.0	-12.2
823809	934.0	870112	905.0	919.5	3.2
823797	887.0	843321	956.0	921.5	-7.5
823789	865.0	843504	987.0	926.0	-13.2
823807	1,350.0	870135	533.0	941.5	86.8
823815	955.0	843225	1,010.0	982.5	-5.6
823767	1,000.0	843444	1,010.0	1,005.0	-1.0
823808	1,030.0	870118	1,005.0	1,017.5	2.5
823775	1,340.0	843403	1,365.0	1,352.5	-1.8
823765	2,020.0	870103	1,785.0	1,902.5	12.4

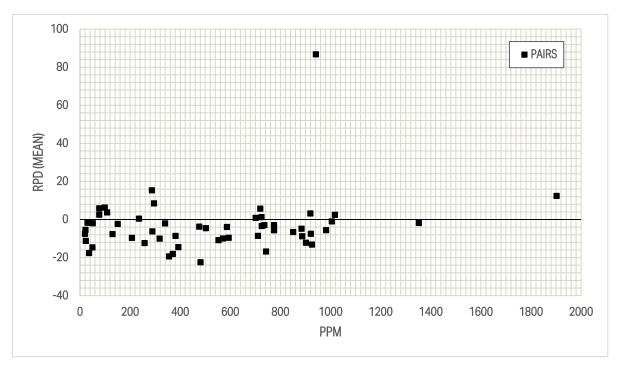


Figure 11-9. Relative Percent Differences (Mean) of the Check Laboratory Repeats.

11.3 OPINION OF THE QUALIFIED PERSON ON ADEQUACY OF SAMPLE PREPARATION

It is the opinion of the authors that the sample preparation, analytical procedures, QC checks, and security measures that were implemented by Pan American and RESPEC are adequate for the purposes of mineral resource estimation and this TR. Two anomalous samples identified in the check sample analysis will be resubmitted for further analysis during future testing programs; however, their impact on the adequacy of the sampling and testing program is immaterial.

12.0 DATA VERIFICATION

12.1 PROPERTY AND CORE FACILITY INSPECTIONS

QP, Erik Hemstad, PE, performed an extended visit at the Property from February 25, 2023, through March 6, 2023. During this time, Mr. Hemstad inspected drilling operations by KB and monitored activities at the core processing facility in Tonopah, Nevada. These activities consisted of supervision during core recovery and transportation, inspection of all drilling locations to include spot verification of select placer claim stake markers, geologic logging and assay sample preparation, chain-of-custody fulfillment, coordination with ALS that included a laboratory visit and inspection, and geologic database construction and oversight.

QP, Tabetha Stirrett, P.Geo., conducted a site visit on March 17 and 18, 2023. During the site visit, the Property geology and drilling procedures were reviewed. Ms. Stirret toured the Property to inspect the current drill location (HL020) and discuss current drilling, core sample handling procedures, and geological conditions with KB personnel and RESPEC field personnel.

Ms. Stirrett also toured the core processing facility. Processes observed included logging of drillcore, sample interval selection, sample packaging, labeling and storage, and data collection and storage. QC protocols, such as storage of CRM and blank material, cleanliness of work area, procedure for QC sample preparation, and verification of QC sample insertion rate were performed. Upon concluding her tour, Ms. Stirrett expressed no significant concerns pertaining to her observations.

12.2 DATABASE VERIFICATION

Pan American's database was subjected to a series of basic logic tests upon loading into the modeling software. Validation tests were conducted to identify the following:

- / Collars with missing depths, missing coordinates, switched or duplicated coordinates
- / Surveys with depths greater than TD or with inappropriate readings (azimuths above 360° or below 0°; dips outside –90°)
- Assays with incorrect from and to intervals, excessively large or small assay intervals, assay intervals greater than TD, and gaps and overlaps in assay intervals
- / Geology with incorrect from and to intervals, excessively large or small geologic intervals, geologic intervals greater than TD, and gaps and overlaps in geologic intervals

When minor data integrity issues were found, they were evaluated and corrected, if warranted, in the modeling database.

12.3 OPINION OF THE INDEPENDENT QUALIFIED PERSON

No limitations on or failures to conduct data verification were observed or encountered. The opinion of the authors is that the field procedures and sampling protocols implemented by RESPEC field personnel are reasonable. Also, the quality of completed laboratory testing during the exploration

program on the Property is reasonable. In the opinion of the authors the samples and associated laboratory datasets used in this TR are accurate and adequate for the purposes of mineral resource estimation and this TR.

13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

No mineral processing or metallurgical testing analyses have been carried out to date on the Property.

14.0 MINERAL RESOURCE ESTIMATES

14.1 INTRODUCTION

The mineral resource estimates presented herein were completed by Ms. Stirrett in accordance with Canadian Securities Administrators' (CSA) NI 43-101 and the CIM. The Property mineral resource block model and an initial resource tabulation were completed on November 15, 2023, based on data derived from 20 holes drilled through July 2023.

Ms. Stirrett is not aware of any unusual environmental, permitting, legal, title, taxation, socioeconomic, marketing, or political factors that may materially affect the Property mineral resources as of the date of this TR.

Lithium resources were estimated and are reported herein with an effective date of November 15, 2023. No mineral reserves have been estimated for the Property. These estimated mineral resources were classified by geological and quantitative confidence in accordance with the CIM [2014] and, therefore, following Canadian Securities Administrators [2016] requirements. The mineral resources described and tabulated in this TR are classified as indicated and inferred mineral resources. Relevant CIM mineral resource definitions are outlined below.

Mineral Resource

A Mineral Resource is a concentration or occurrence of solid material of economic interest in or on the Earth's crust in such form, grade or quality and quantity that there are reasonable prospects for eventual economic extraction. The location, quantity, grade or quality, continuity and other geological characteristics of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge, including sampling.

Indicated Mineral Resource

An Indicated Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors in sufficient detail to support mine planning and evaluation of the economic viability of the deposit. Geological evidence is derived from adequately detailed and reliable exploration, sampling and testing and is sufficient to assume geological and grade or quality continuity between points of observation. An Indicated Mineral Resource has a lower level of confidence than that applying to a Measured Mineral Resource and may only be converted to a Probable Mineral Reserve.

Inferred Mineral Resource

An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity. An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

Modifying Factors

Modifying Factors are considerations used to convert Mineral Resources to Mineral Reserves. These include, but are not restricted to, mining, processing, metallurgical, infrastructure, economic, marketing, legal, environmental, social and governmental factors.

The Property mineral resources are reported at cutoffs that are reasonable for deposits of this nature, given anticipated mining methods and plant processing costs, while also considering economic conditions, according to the regulatory requirements that a resource exists "in such form, grade or quality, and quantity that there are reasonable prospects for economic extraction."

14.2 PROJECT DATA

Mineral resources were estimated using data generated during the 2023 Pan American exploration drilling program, as well as digital topography of the Property sourced from publicly available data. The data are in UTM Zone 11 NAD83 coordinates in meters. The database includes information from the first 21 holes drilled on the Property. A total of 20 of these drillholes contribute assay data that are directly used in the estimation of the lithium mineral resources, as summarized in Table 14-1. No assay data were excluded from use in resource estimation.

	Valid	Median	Mean	Standard Deviation	Covariance	Minimum	Maximum	Units
FROM	2,345					0	304.19	m
ТО	2,345					3.96	304.80	m
Length	2,345	1.50	1.84			0.20	82.90	m
Lithium	2,311*	317.0	421.4	356.3	0.845	7.2	2,040.0	ppm
Density	47	1.55	1.55	0.26	0.164	1.05	2.49	g/cm ³

Table 14-1. Descriptive Statistics of Sample Assays in Horizon Drillhole Database

*Sample count difference caused by four samples in HL024 being split at survey intervals. This difference did not impact the resource estimate because of assay compositing to 3 m lengths.

The drilling database comprises 20 drillholes totaling 4,371.6 m, as shown in Table 14-2.

Table 14-2. Summary of Drilling in the Database for	or
the Project Deposit Resource Estimate	е

Type of Hole	Count	Drilled Meters
Core	20	4,371.6

14.3 PROPERTY GEOLOGY RELEVANT TO RESOURCE MODEL

The Property lithium deposit is primarily hosted in Miocene Siebert Formation claystones, with minor mineralization within interbedded volcaniclastic units. The Siebert Formation is overlain by highly variable amounts of alluvium, ranging from 0 to 136 m, as noted during Phase I and II drilling. The main geologic control on mineralization is stratigraphy; higher grade mineralization is contained within claystone beds, whereas lower grade mineralization is generally associated with claystones

interbedded with sandstones, conglomerates, or tuffaceous layers. There are no apparent structural controls on the mineralization, and the overall sedimentary package dips very gently to the northwest, as indicated by tuffaceous marker beds identified in Pan American drillholes.

14.4 GEOLOGIC MODEL

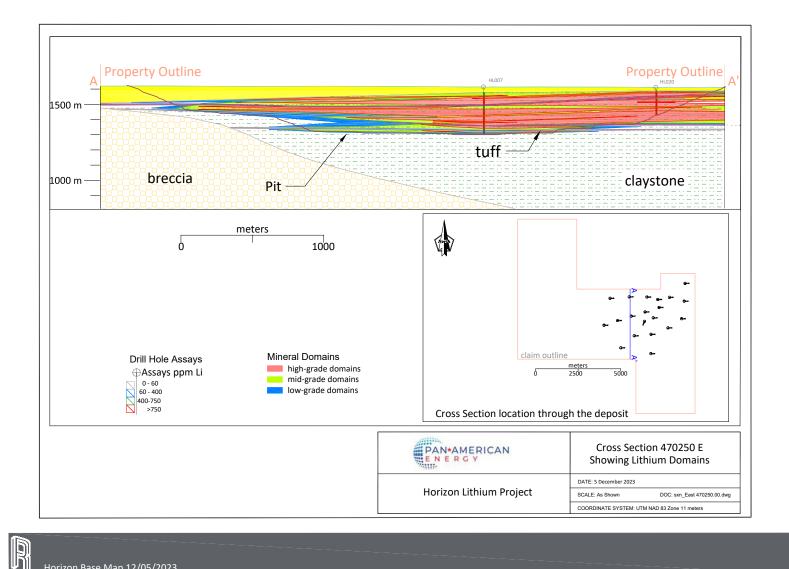
RESPEC produced a three-dimensional (3D) digital geologic model based on downhole lithologic data and the regional surface geology map from Bonham and Garside [1979]. Faulting has likely occurred, offsetting stratigraphy and locally increasing the depth to the top of lithium host-rock units. However, fault locations and offsets are difficult to interpret because of the wide-spaced drillhole information and, therefore, were not included in the geologic model. A district stratigraphic cross section from Bonham and Garside [1979] was used as a reference to provide context to the lithologic units encountered in Pan American's drilling. All but two drillholes ended within claystone units of the Siebert Formation, described as *Ts* in Section 7.3.5. Holes HL027 and HL031 ended in gravel and have been interpreted as a basal unit of the Siebert Formation. These gravel units are described in Section 7.3.5 as the basal sedimentary beds (*Tsb*), as shown by Bonham and Garside [1979] on the cross section. The geologic model does not incorporate underlying stratigraphic formations, such as the Fraction Tuff–Tonopah Summit Member or Mizpah Formation.

14.5 MINERAL DOMAIN MODELING

A mineral domain encompasses a volume of rock characterized by a single, natural grade population of a metal (or metals) that occurs within a specific geologic environment. To define the mineral domains at the Property, the natural lithium populations were first evaluated on population-distribution graphs that plot the lithium-grade distribution of all drillhole assays. Three grade populations for lithium were identified. Ideally, each of the populations can be correlated with specific geologic characteristics from the drillhole logging in the Property database. These characteristics can be used in conjunction with the grade populations to interpret the bounds of the lithium mineral domains. The approximate grade ranges of the low-grade (domain 100), mid-grade (domain 200), and high-grade (domain 300) domains that were modeled for lithium are listed in Table 14-3.

	-
Domain	ppm Lithium
100	~60 to ~400
200	~400 to ~750
300	>~750

Table 14-3. Approximate Grade Ranges of Lithium Domains


The lithium mineral domains were interpreted in a 3D modeling software package using the lithium drillhole assay data and associated lithologic codes, as well as cross-sectional lithological interpretations. The geological information was used to discern the stratigraphic controls of the mineralization and to model the domains accordingly using a set of vertical, 450 m spaced, north-to-south cross sections that span the extent of the Property. The final cross-sectional mineral domain polygons were projected to the drill data within and perpendicular to each sectional window, and these 3D polygons were used to model the domain solids. Modeling was completed using both Leapfrog Geo and MinePlan software.

The high-grade mineralization within the deposit strongly correlates with interbedded to massive claystone. The low- to mid-grade domains were largely determined by grade and included other sedimentary layers, such as sandstones and volcanic tuffs. Some variability of the Property mineralization resulted in the inclusion of minor quantities of low- and/or high-grade mineralization within a given domain. Cross sections showing examples of typical lithium mineral domains in the central portion of the Property deposit are shown in Figure 14-1.

67

Horizon Base Map 12/05/2023

Figure 14-1. North-to-South Cross Section 470250E Showing Lithium Domains and Geology.

14.6 ASSAY CODING, CAPPING, AND COMPOSITING

Drillhole assays were coded by the lithium mineral domains using cross-sectional polygons. Inspection of population-distribution plots of the coded assays by domain was done to identify high-grade outliers that might be appropriate for capping. Descriptive statistics of the coded assays by domain and visual reviews of the spatial relationships of the possible outliers and their potential impacts during grade interpolation were also considered to determine assay caps. Assay caps were determined to be unnecessary for the resource estimation except for assays outside modeled domains, which were capped at 100 ppm lithium.

In addition to the assay caps, restrictions on the search distances for composites above relatively higher grades were applied to low- and mid-grade domains during grade interpolations.

Table 14-4 presents descriptive statistics of all drillhole analytical data and the coded assays of capped and uncapped lithium analyses. Data from rejected samples are excluded from the table.

			Low-Gra	ade Lithium Do	main			
	Sample Count	Median	Mean	Standard Deviation	Covariance	Minimum	Maximum	Units
Lithium	858	181.5	196.8	105.2	0.534	17.4	735.0	ppm
Capped Lithium	858	181.5	196.8	105.2	0.534	17.4	735.0	ppm
			Mid-Gra	ade Lithium Do	main			
	Sample Count	Median	Mean	Standard Deviation	Covariance	Minimum	Maximum	Units
Lithium	486	545.0	544.4	124.2	0.228	7.2	956.0	ppm
Capped Lithium	486	545.0	544.4	124.2	0.228	7.2	956.0	ppm
			High-Gr	ade Lithium Do	main			
	Sample Count	Median	Mean	Standard Deviation	Covariance	Minimum	Maximum	Units
Lithium	560	903.0	930.0	206.0	0.221	205.0	2,040.0	ppm
Capped Lithium	560	903.0	930.0	206.0	0.221	205.0	2,040.0	ppm
			Outside Mo	deled Lithium I	Domains			
	Sample Count	Median	Mean	Standard Deviation	Covariance	Minimum	Maximum	Units
Lithium	407	44.3	48.3	27.9	0.577	8.6	204.0	ppm
Capped Lithium	407	44.3	47.0	23.8	0.506	8.6	100.0	ppm

Table 14-4. Descriptive Statistics of Assays by Lithium Domains

The capped assays were composited at 3-m downhole intervals, respecting the mineral domain boundaries. Descriptive statistics of the composites for lithium domains are shown in Table 14-5.

			Low-Gr	ade Lithium Do	omain			
	Composite Count	Median	Mean	Standard Deviation	Covariance	Minimum	Maximum	Units
Length	449	3.00	2.95			0.90	4.40	m
Lithium	449	190.7	198.2	97.6	0.493	36.7	696.1	ppm
Capped Lithium	449	190.7	198.2	97.6	0.493	36.7	696.1	ppm
			Mid-Gr	ade Lithium Do	omain			
	Composite Count	Median	Mean	Standard Deviation	Covariance	Minimum	Maximum	Unite
Length	265	3.00	2.74			0.70	4.40	m
Lithium	265	547.6	547.3	106.7	0.195	303.5	814.6	ppm
Capped Lithium	265	547.6	547.3	106.7	0.195	303.5	814.6	ppm
			High-G	rade Lithium D	omain			
	Composite Count	Median	Mean	Standard Deviation	Covariance	Minimum	Maximum	Units
Length	292	3.00	2.89			0.50	4.10	m
Lithium	292	898.1	930.7	159.3	0.171	574.5	1,568.6	ppm
Capped Lithium	292	898.1	930.7	159.3	0.171	574.5	1,568.6	ppm
			Outside Mo	odeled Lithium	Domains			
	Composite Count	Median	Mean	Standard Deviation	Covariance	Minimum	Maximum	Unite
Length	196	3.00	2.94			0.00	4.50	m
Lithium	193	44.3	44.8	20.9	0.468	9.1	119.2	ppm
Capped Lithium	193	44.3	44.6	20.5	0.460	9.1	100.0	ppm

Table 14-5. Descriptive Statistics of Project Composites by Lithium Domains

14.7 DENSITY

The database contains 47 specific gravity measurements from core samples taken during Pan American's drill program. RESPEC staff were responsible for collecting density analyses using ASTM Method C914 (water immersion with wax coating). Based on the limited number of available samples, specific gravity values were assigned to the block model by lithology type as summarized in Table 14-6.

Table 14-6. Project Deposit Applied Densities

Lithology	Number of Samples	Minimum g/cm ³	Maximum g/cm ³	Density g/cm ³
Alluvium	0			1.51
Claystone	36	1.15	1.70	1.51
Sandstone	3	1.36	1.65	1.49
Crystal Tuff	4	1.10	1.26	1.18
Breccia/Conglomerate	4	1.69	1.80	1.76

14.8 BLOCK MODEL CODING

The Property mineral resource was modeled and estimated within a single block model. The project block model extends beyond the current Property land holdings; however, only those model blocks within the land position were included in mineral resource tabulations.

The 3D domain solids were used to code a block model with 30 × 30 × 10 m (x, y, z) blocks and a bearing of 0 degrees (i.e., no rotation). The volume percentages of each lithium domain were stored in each block (partial percentage coding). The block model was also coded using the topographic surface and lithologic unit solids.

14.9 GRADE INTERPOLATION

Lithium grades were interpolated into the block model using inverse distance and nearest neighbor methods. The mineral resources reported herein were estimated by ID² because this method produced results that most appropriately respected the assay data. The nearest neighbor estimation was completed for the purpose of statistically checking the ID² estimate. Because of the sub-horizontal lithological controls, the block model was coded using one search-ellipse orientation characterized by a shallow dip of 2 degrees to the west, as shown in Table 14-7.

Fatimation	Search	-Ellipse Orient	ation	Maxim	um Search Dist	ance (m)
Estimation Area	Azimuth (degrees)	Dip (degrees)	Rotation (degrees)	Low-Grade Mid-Grade		High-Grade
1	270	2	0	5,000	5,000	5,000

Table 14-7. Project Search-Ellipse Orientation and Maximum Search Distance

Estimation passes were performed independently for each mineral domain, as shown in Table 14-8. The first estimation long pass ensured that blocks at the outer extents of the domains were populated. The second estimation short pass was applied within the drilling limits and used tighter anisotropy and grade restrictions to match the drill data more closely. Blocks estimated beyond short pass distances were not classified as inferred mineral resources or above. The estimated grades and partial percentages of the mineral domains were used to calculate the weight-averaged lithium grades for each block. Grades and percentages outside modeled domains were included in the calculations to produce fully block-diluted grades.

Table 14-8. Project Estimation Parameters

Description		Parameter	
Estimation Pa	ss One		
	Low-Grade	Mid-Grade	High-Grade
Composites: minimum/maximum/maximum per hole	1/9/3	1/9/3	1/9/3
Search anisotropies (m): major/semimajor/minor (vertical)	10/10/1	10/10/1	10/10/1
Inverse distance power	2	2	2
High-grade restrictions (grade in ppm Li, distance in m)	500/1000	800/1000	
Estimation Pa	iss Two		
	Low-Grade	Mid-Grade	High-Grade
Composites: minimum/maximum/maximum per hole	1/9/3	1/9/3	1/9/3
Maximum Search Distance (m)	1000	1000	1000
Search anisotropies (m): major/semimajor/minor (vertical)	2/2/1	5/5/1	10/10/1
Inverse distance power	2	2	2
High-grade restrictions (grade in ppm Li, distance in m)	500/500	800/500	
Outside Modeled	Domains		
Composites: minimum/maximum/maximum per hole		1/9/3	
Search anisotropies (m): major/semimajor/minor (vertical)		6/6/1	
Inverse distance power		2	
High-grade restrictions (grade in ppm Li, distance in m)		60/100	

14.10 MINERAL RESOURCES

The mineral resources were tabulated to reflect potential open pit mining extraction as the primary scenario. The pit optimization reports production as LCE. To meet the requirement of reasonable prospects for eventual economic extraction, a pit optimization was run using the parameters summarized in Table 14-9.

lable 14-9. Pit Optimization Parameters						
ltem	Value	Unit				
Mining Cost	US\$2.20	\$/tonne				
Processing Cost	US\$14.12	\$/tonne processed				
Process Rate	10,800,000	tonnes-per-year processed				
General and Administrative Cost	US\$0.42	\$/tonne processed				
LCE Price	US\$20,000	\$/tonne				
Lithium Recovery	66	percent				
Lithium Minimum Grade	300	ppm				

Table 14-9. Pit Optimization Parameters

The pit optimization was produced in GEOVIA Surpac[™] and used to constrain the mineral resources (Figure 14-2), which are reported at a cutoff grade of 300 ppm lithium applied to all model blocks lying within the optimized pit. The lithium cutoff grade was calculated using the processing and general and administrative costs, lithium price, and recovery parameters. The mining cost is not included in the determination of the cutoff grade, as all material in the conceptual pit would potentially be mined as either ore or waste. The reference point at which the mineral resources are defined is therefore at the top rim of the pit, where material having lithium equal to or greater than the cutoff grade would be processed. The Property lithium mineral resources are summarized in Table 14-10. Mineral resources that are not mineral reserves do not have demonstrated economic viability.



Figure 14-2. Plan View Map Showing Pit Optimized Resource Outline.

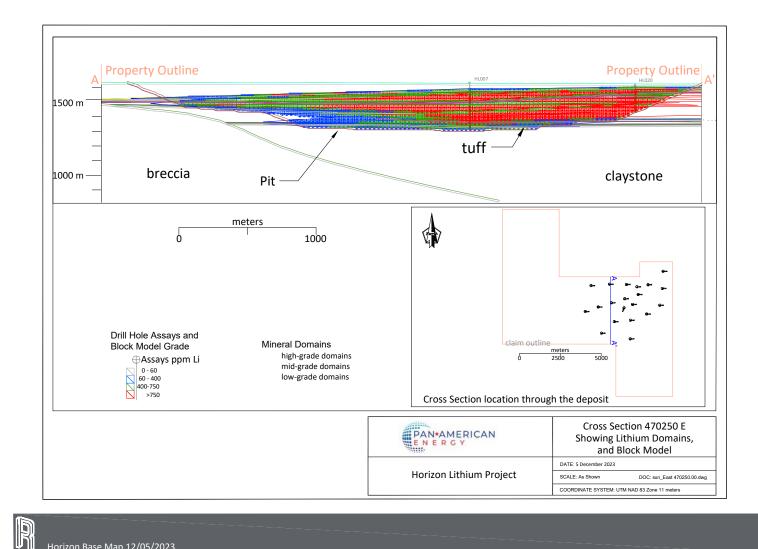
Classification	Cutoff Lithium Grade (ppm)	Total (K-tonnes)	Average-Grade Lithium (ppm)	Lithium (K-tonnes)	LCE (K-tonnes)
Indicated	300	372,845	669	249	1,325
Inferred	300	2,453,963	680	1,668	8,879

Table 14-10. Project Lithium Mineral Resources

Notes:

- / The mineral resource estimate is in metric tonnes.
- / Mineral resources comprise all model blocks at a 300 ppm lithium cutoff within an optimized pit.
- / Mineral resources are block-diluted tabulations.
- / To describe the resource in terms of industry-standard LCE, a conversion factor of 5.323 was used to convert elemental lithium to LCE.
- / Twenty drillholes were used in the mineral resource estimate.
- / An inferred mineral resource has a lower confidence level than measured and indicated mineral resources and must not be converted to mineral reserves. It is reasonably expected that most of the inferred mineral resources could be upgraded to indicated mineral resources with continued delineation drilling.
- / Mineral resources potentially amenable to open pit mining methods and leach processing are reported using a lithium carbonate price of US\$20,000/tonne, a throughput of 30,000 tonnes/day, assumed metallurgical recoveries of 66 percent, mining costs of US\$2.20/tonne mined, processing costs of US\$14.12/tonne processed, and general and administrative costs of US\$0.42/tonne processed. The results from pit optimization are used solely to test for "reasonable prospects for economic extraction" and do not represent an attempt to estimate mineral reserves. There are no mineral reserves on the Property. The results are used as a guide to assist in preparing the mineral resource estimate and selecting an appropriate resource reporting cutoff grade.
- / The estimate of mineral resources may be materially affected by environmental, permitting, legal, title, taxation, sociopolitical, marketing, or other relevant issues.
- / The effective date of the mineral resource estimate is November 15, 2023.
- / All figures are rounded to reflect the relative accuracy of the estimate, and sums may vary because of rounding.

The open pit resource estimate above is based on a 30,000 tonnes per day processing rate, with processing assumed to consist of acid leaching and recovery of lithium in the form of battery-grade lithium hydroxide product expressed in units of LCE.


The pit shells created using these optimization parameters were used to constrain the Property resources at a minimum grade of 300 ppm Li, based on the current volatility of LCE prices.

All mineral resources are contained within the Property boundary. Pit shells used for optimization were allowed to go slightly outside the boundary, such that all mineral resource material inside the Property can be reported. In an actual mine design, pit edges would have to be moved within the boundary unless access to adjacent lands were acquired.

Figure 14-3 presents a cross section through the central portion of the Property that shows estimated lithium grades in the block model. This figure corresponds to the mineral domain cross sections presented in Figure 14-1.

Horizon Base Map 12/05/2023

Figure 14-3. North-to-South Cross Section 470250E Showing Lithium Grades in the Block Model.

75

RSI-3334

Table 14-11 presents the Property mineral resources compared to subsets of mineralized material tabulated with increasing cutoff grades. This is presented to provide grade distribution data that allows for a detailed assessment of the Property's mineral resources and their sensitivities to different cutoff grades. All the tabulations are constrained as lying within the same optimized pit shell used to constrain the current mineral resources. The tabulations at cutoffs higher than those of the base case resource cutoff grade of 300 ppm lithium (bolded in the table) represent subsets of the current resources.

Classification	Cutoff-Grade Lithium (ppm)	Total (K-tonnes)	Average-Grade Lithium (ppm)	Lithium (K-tonnes)	LCE (K-tonnes)
Indicated	300	372,845	669	249	1,325
Indicated	400	305,266	740	226	1,203
Indicated	500	262,449	787	207	1,102
Indicated	600	222,084	830	184	979
Indicated	700	176,255	877	155	825
Indicated	800	118,520	938	111	591
Classification	Cutoff-Grade Lithium (ppm)	Total (K-tonnes)	Average-Grade Lithium (ppm)	Lithium (K-tonnes)	LCE (K-tonnes)
Inferred	300	2,453,963	680	1,668	8,879
Inferred	300 400	2,453,963 2,123,672	680 732	1,668 1,554	8,879 8,272
					-
Inferred	400	2,123,672	732	1,554	8,272
Inferred Inferred	400 500	2,123,672 1,891,603	732 766	1,554 1,449	8,272 7,713

Table 14-11. Project Indicated and Inferred Mineral Resources at Various Cutoffs

Notes:

/ The mineral resource estimate is in metric tonnes.

/ Mineral resources comprise all model blocks at a 300 ppm lithium cutoff within an optimized pit.

/ Mineral resources are block-diluted tabulations.

/ To describe the resource in terms of industry-standard LCE, a conversion factor of 5.323 was used to convert elemental lithium to LCE.

/ Twenty drillholes were used in the mineral resource estimate.

/ An inferred mineral resource has a lower confidence level than measured and indicated mineral resources and must not be converted to mineral reserves. It is reasonably expected that most of the inferred mineral resources could be upgraded to indicated mineral resources with continued delineation drilling.

/ Mineral resources potentially amenable to open pit mining methods and leach processing are reported using a lithium carbonate price of US\$20,000/tonne, a throughput of 30,000 tonnes/day, assumed metallurgical recoveries of 66 percent, mining costs of US\$2.20/tonne mined, processing costs of US\$14.12/tonne processed, and general and administrative costs of US\$0.42/tonne processed. The results from pit optimization are used solely to test for "reasonable prospects for economic extraction" and do not represent an attempt to estimate mineral reserves. There are no mineral reserves on the Property. The results are used as a guide to assist in preparing the mineral resource estimate and selecting an appropriate resource reporting cutoff grade.

I The estimate of mineral resources may be materially affected by environmental, permitting, legal, title, taxation, sociopolitical, marketing, or other relevant issues.

/ The effective date of the mineral resource estimate is November 15, 2023.

/ All figures are rounded to reflect the relative accuracy of the estimate, and sums may vary because of rounding.

The Property mineral resources in this estimate have been classified as indicated and inferred as summarized in Table 14-12. The inferred classification is limited to blocks within 2,400 meters of the drill data. Any estimated blocks which did not meet the inferred criterion were not classified and, therefore, were not reported as mineral resources. Any estimated blocks within 200 meters of the drill data were upgraded to indicated classification.

 Table 14-12.
 Project Resource Classification Parameters

Project Resource Classification Parameters						
Indicated						
In modeled domain, and						
Number of samples \geq 1 and closest distance \leq 200 m						
Inferred						
In modeled domain that is not indicated, and						
Number of samples \geq 1 and closest distance \leq 2,400 m						

The Property's mineral resource classification is based on the confidence in the underlying data and reflects the lower variability of grades over distance for deposits of this type. The drilling and sampling of drillholes has provided a positive initial understanding of flat-lying geologic controls within the Siebert Formation on lithium mineralization and reduced the risk of sample contamination.

Uncertainties that could impact resource classification include:

- / Potential for additional unknown barren sedimentary and tuffaceous beds
- / Potential for subsurface faults offsetting or truncating lithium mineralization
- / Potential for additional density samples to significantly alter bulk density assumptions
- / Lack of metallurgical data

Additional drilling and sampling, metallurgical test work, and more detailed geological and mineralization modeling are required to allow for higher classification of the Property's mineral resources.

14.11 DISCUSSION OF RESOURCES - RISKS AND RECOMMENDATIONS

The current Property mineral resources are estimated considering potential mining by open pit with 30m x 30m x 10m blocks to accommodate open pit engineering requirements. All other modeling processes and inputs that were used to estimate the lithium resources, including the mineral domain modeling, grade capping, grade estimation, density assignment, and classification, were completed independently of potential mining methods.

The mineral resources are classified based on the underlying geological understanding and drillhole spacing of the deposit. Future upgrades to the mineral resources will require step-out drilling to define the extent of mineralization on untested portions of the Property and increase confidence in the geological interpretation. Future exploration and resource definition at Property should include infill drilling to increase drillhole density, increase understanding of lithium mineralization, and test the continuity of the geological and mineral domain interpretations.

The uncertainty of grade distribution is minimized in an open pit mining scenario. However, more closely spaced drilling would increase confidence in the location and extent of the mid- and high-grade domain mineralization. Increased drilling density would provide more information on stratigraphic and potential structural controls.

An additional risk to the mineral resources is the lack of metallurgical test work to confirm that lithium recovery is economically feasible. While the recovery and processing assumptions are based on nearby lithium projects and are adequate for estimating a cutoff grade for the current mineral resources, further testing will be required to increase confidence in the applied recovery to upgrade resource classification.

Ms. Stirrett believes that further drilling and metallurgical test work could resolve any factors that would likely influence the prospect of economic extraction.

15.0 MINERAL RESERVE ESTIMATES

The TR does not include an estimate of mineral reserves.

20.0 ENVIRONMENTAL STUDIES, PERMITTING, AND SOCIAL OR Community Impact

23.0 ADJACENT PROPERTIES

At least 13 adjacent mineral properties exist within the surrounding area of the Property; these properties are listed in Table 23-1 and illustrated in Figure 23-1. The authors have not verified the information regarding adjacent properties and such information is not necessarily indicative of the mineralization on the Property.

Property Name	Targeted Commodity	Host Lithology/ Formation	Surface Area (ha)	Owner	
Tonopah Flats Lithium Project	Lithium	Claystone/Siebert Formation	4,184	American Battery Technology Company	
Tonopah Lithium Claims	Lithium	Claystone/Siebert Formation	5,062	American Lithium Corp.	
Polaris and Altair Project	Lithium	Claystone/Siebert Formation	4,209	Astute Metals NL	
Tonopah West	Silver/Gold	Int. Volcanics/Tonopah Formation	566	Blackrock Silver Corp.	
Tonopah North/Gabriel Project	Lithium Claystone/Siebert Formation 2,104		2,104	Blackrock Silver Corp./Tearlach Resources	
Halo Lithium Project	Lithium	Claystone/Siebert Formation	819	POWR Lithium	
West Tonopah Lithium Project	Lithium	Claystone/Siebert Formation	712	Enertopia Corp.	
Heller	Lithium	Claystone/Siebert Formation	1,711	Future Battery Minerals	
Lone Mountain	Lithium	Claystone/Siebert Formation	1,732	Future Battery Minerals	
Traction	Lithium	Claystone/Siebert Formation	1,705	Future Battery Minerals	
Western Flats	Lithium	Claystone/Siebert Formation	2,421	Future Battery Minerals	
Alkali Lake	Lithium	Lithium Brine/Claystone	3,908	Reedy Lagoon	
Horizon South Lithium	Lithium	Claystone/Siebert Formation	7900	Refined Metals	

Table 23-1. Adjacent Properties

Three of the lithium-focused properties listed in Table 23-1 have released mineral resource estimates. These properties and the resource estimates as reported are shown in Table 23-2 (the West Tonopah Lithium Project is one property but reported two separate resource estimates). Future Battery Minerals intends to release a resource estimate in Q1 of 2024. Other properties, including Astute Metals NL, Blackrock Silver Corp./Tearlach Resources, and POWR Lithium, have conducted drilling accompanied by geochemical assay but have yet to publish resource estimates. Reedy Lagoon's Alkali Lake Project was expanded in 2023 to include claystone exploration, in conjunction with the existing brine exploration. Refined Metals announced the acquisition of the Horizon South Lithium property in February 2023.

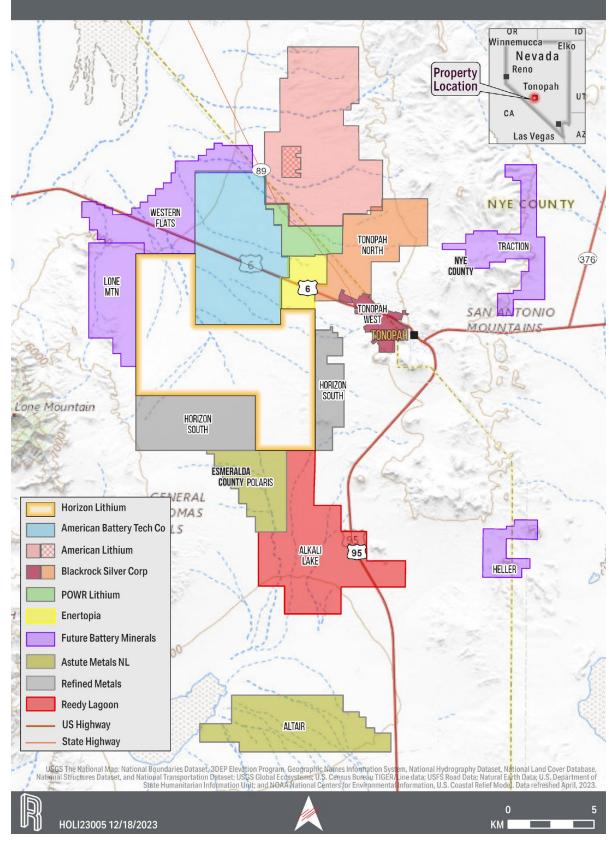


Figure 23-1. Adjacent Properties.

Table 23-2. Lithium-Focused Adjacent Properties With Reported Mineral Resource Estimates

Property	Indicated	Inferred	Effective Date, Consulting Firm	Report Format
Tonopah Lithium Claims	3.35 Mt (3.72 MT)	2.02 Mt (2.23 MT)	April 2020, Stantec Consulting Ltd.	NI-43-101
Tonopah Flats Lithium Project		14.3 Mt (15.3 MT)	February 2023, RESPEC	SK-1300
West Tonopah Lithium - West	0.21 Mt (0.23 MT)	0.42 Mt (0.46 MT)	November 2023, APEX Geoscience	NI-43-101
West Tonopah Lithium – East		0.024 Mt (0.027 MT)	November 2023, APEX Geoscience	NI-43-101

(a) Conversion: 1 metric tonne (Mt) = 1.102 short tons (MT).

(b) All resource estimates are shown as LCE.

(c) Totals may not represent the sum of the parts because of rounding.

The authors have not been able to verify any of the information shown in Table 23-1 or Table 23-2, and this information is not necessarily indicative of the mineralization at the Property.

There is no other additional relevant information at this time necessary to make the TR understandable and not misleading.

The authors of the TR reviewed the available Property data and visited the Property in February and March 2023. The authors believe the data reviewed and the geological interpretations derived from this information are accurate and a reasonable representation of the Property.

25.1 THE PROPERTY

The Property is located in Esmeralda County of west-central Nevada, and the eastern boundary lies approximately 5 km west of the town of Tonopah. The Property totals 7,015 ha and consists of 839 contiguous unpatented lode mineral claims. All claimed land is classified as unrestricted and is controlled by the BLM. The surface topography is that of a broad alluvial plane, interspersed by ephemeral-stream beds and shallow arroyos, which coalesce and drain to the northwest. Vegetation is typical to the high desert, American West—sagebrush, small shrubs, and grasses.

The Property is situated along the western margin of the Basin and Range geological province, characterized by alternating fault-bounded mountain ranges and elongated basins. The broad alluvial plane is the floor of one such basin, where hundreds of meters of lake-deposited sediments accumulated, known as the Siebert Formation, and are capped by younger sand and gravels. The Siebert Formation is predominantly dense claystone, which, through a number of processes, has been enriched with lithium to varying degrees laterally and with depth.

25.2 EXPLORATION

In 2023, Pan American completed 21 drillholes during two phases of exploration drilling for a total of 4,538.6 m. Of this, 3,443.3 m was core drilling (includes unrecovered zones), from which 2,303 split-core samples were prepared and sent to an independent laboratory for geochemical analysis. RESPEC implemented a rigorous QA/QC program using various CRMs, field and pulp duplicates, and blanks to evaluate bias within the dataset. The overall insertion rate targeted for the field program was 5 percent (the insertion rate achieved was 5.12 percent). Check samples consisted of pulp duplicates, CRMs, and blanks were sent to a second independent laboratory to cross check the original laboratory dataset.

25.3 RESOURCE ESTIMATE

Lithium resources were estimated in accordance with CIM [2014] and following Canadian Securities Administrators [2016] guidance, including 43-101. Mineral resources potentially amenable to open pit mining methods and leach processing were calculated using a lithium carbonate price of US\$20,000/tonne, a throughput of 30,000 tonnes/day, assumed metallurgical recoveries of 66 percent, mining costs of US\$2.20/tonne mined, processing costs of US\$14.12/tonne processed, and a general and administrative cost of US\$0.42/tonne processed. All model blocks used to compile the mineral resource adhere to a 300 ppm lithium cutoff within an optimized pit.

The mineral resources in this estimate have been classified as indicated and inferred. An inferred mineral resource has a lower level of confidence than that of an indicated mineral resource. The estimated mineral resources at the Property are shown in Table 25-1.

Classification	Cutoff Lithium Grade (ppm)	Total (K-tonnes)	Average-Grade Lithium (ppm)	Lithium (K-tonnes)	LCE (K-tonnes)
Indicated	300	372,845	669	249	1,325
Inferred	300	2,453,963	680	1,668	8,879

Table 25-1. Summary of Mineral Resource Estimates at the Property

25.4 CONCLUSIONS OF THE QUALIFIED PERSONS

The Property hosts a large-tonnage mineral resource with respectable grades. It is located close to supporting infrastructure and within a jurisdiction friendly to mineral development. The authors conclude that the Property is one of merit and is worthy of further exploration and technical investigation. Pursuing a higher classification of the mineral resource estimate, including expanding the indicated resource, establish measured resources, and ultimately upgrading mineral resource to mineral reserves, would be reasonable and is recommended by the authors. The potential exists to significantly increase the known deposit with further drilling to the south and to the west, and with infill drilling throughout the core of the Property. A calculated and methodical approach to exploring the remainder of the Property will be critical to long-term success, along with continued market demand for products and services dependent upon lithium-ion battery storage. The authors are not aware of any environmental, cultural, or otherwise legal conflicts that could arise through further exploration and eventual development of a mineral resource at the Property. Project risk related to mineral processing should be addressed as it moves into further development phases. Failure to develop a mineral processing strategy that yields acceptable lithium recovery while not consuming unreasonable amounts of reagent solutions could be detrimental to the project's potential economic viability.

The authors recommend that Pan American conduct two phases of additional work on the Property. Phase I will consist of exploration through geophysical surveying and core drilling with follow-on geochemical testing. Geophysical data and core assay results would be incorporated into the existing geological and resource models. Bench-scale metallurgical testing using claystone samples from the Property should also be undertaken as part of Phase I, along with developing a processing strategy. For Phase II, the authors recommend that a PEA or scoping study be conducted in parallel with updating the model and metallurgical work for the Property. The following sections contain details of these recommendations. The estimated cost ranges for these activities are listed in Table 26-1.

Estimated Cost Range (thousands, CAD)					
Phase I					
\$130-200					
\$1,500-2,000					
\$160-220					
Phase II					
\$250-600					

Table 26-1. Estimated Cost Range for Each Recommended Project Activity

26.1 PHASE I

26.1.1 GEOPHYSICAL SURVEY

The authors recommend that Pan American conduct a seismic survey to define the thickness of overburden sediments and better understand the impact of underlying structural features. This knowledge would be used to guide the design of expansion and infill drilling and be incorporated into Pan American's existing geological and resource model to aid in defining the continuity between drillholes and geologic units.

26.1.2 PHASE III DRILLING

A third phase of drilling is recommended to laterally expand the stratigraphic understanding of the Property and advance the mineral resource potential. The scope and coverage of a Phase III drill plan would be, in part, based upon the acquired and interpreted geophysical data. The distribution and total number of drillholes would largely be based on the authors' understanding of overburden thickness and inferred structures at depth. Expansion drillhole spacing would be reasonably consistent with past work while also being adequate to effectively expand the mineral resource model. The authors recommend completing a twinned hole at the HL008 location to extend the mineral resource beyond the current depth.

26.1.3 METALLURGICAL TESTING

The authors recommend that Pan American pursue metallurgical testing and the development of a mineral processing strategy. The authors understand that Pan American has ongoing discussions with select academic institutions to this end. A lithium-claystone recovery process flowsheet should be developed to aid in downstream mining operation and recovery methods, capital and operating expense estimates, and economic studies.

26.2 PHASE II

The authors recommend that a PEA be completed for the Property, pending positive results from geochemical and metallurgical testing of samples gathered during recommended drilling. Several tasks are required to complete this and, at a high level, include the following:

- / Identification of groundwater sources to be used in the development of the Property
- Initial mine design and development, including waste disposal, reclamation, and mitigation plans
- / Lithium processing facilities' initial evaluation
- / Project infrastructure assessment and design, including power supply, access roads, and required utilities
- / Development of regulatory process, agencies, timelines, and costs
 - » Identify pre- and post-mining land uses.
 - » Assess requirements for baseline studies.
 - » Assume waste disposal, reclamation, and mitigation plans.
- / Estimations of capital and operating costs
- / Economic analysis on identified measured and indicated resources

In summary, this level of study requires an analysis of a project's economic viability, which typically involves evaluating the pre-production capital costs, life-of-mine sustaining capital, cash flow, and production and processing methods and rates, among other variables.

27.0 REFERENCES

Asher-Bolinder, S., 1991. *Descriptive Model of Lithium-Rich Playa Brine*, U.S. Geological Survey Open-File Report 91-11A, 53-54p.

Bonham, Jr., H. F. and L. J. Garside, 1979. *Geology of the Tonopah, Lone Mountain, Klondike, and Northern Mud Lake Quadrangles, Nevada,* Bulletin 92, Mackay School of Mines, University of Nevada, Reno.

Canadian Institute of Mining, Metallurgy and Petroleum, 2014. *CIM Definition Standards for Mineral Resources and Reserves,* prepared by the CIM Standing Committee on Reserve Definitions, Westmount, QC.

Canadian Securities Administrators, 2016. Unofficial Consolidation of All Amendments to National Instrument (NII) 43-101 Standards of Disclosure for Mineral Projects, prepared by the Securities Division, Regina, SK.

Climate-data.org, **2022**. "Tonopah Climate," accessed December 29, 2022, from *https://en.climate-data.org/north-america/united-states-of-america/nevada/tonopah-124566/*

Danielson, K., 2000. "Mountains," accessed December 6, 2023, from www.nps.gov/grba/learn/nature/mountains.htm

Data USA, 2022. "Tonopah, NV," accessed December 29, 2022, from https://datausa.io/profile/geo/tonopah-nv

Haynes, W. M., 2016. *Abundance of Elements in the Earth's Crust and in the Sea*, CRC Handbook of Chemistry and Physics, Edition 97, CRC Press, Boca Raton, Florida, p. 14-17.

Maldonado, F., 1984. *Bedrock Geologic Map of the Lone Mountain Pluton Area, Esmeralda County, Nevada.* Miscellaneous Investigation Series, Map I-1533, US Geological Survey.

McCraken, R. D., 1990. A History of Tonopah, Nevada, Nye County Press, 37p.

McGuire, T., 2015. "Basin and Range Province," December 8, 2015, https://epod.usra.edu/blog/2015/12/basin-and-range-province.html

On Track North America, 2023. *Chapter 2 Existing Nevada Rail System*, accessed January 1, 2023, *https://www.ontracknorthamerica.org/wp-content/uploads/8CHAPTER2NevadaExistingRai.pdf*

Orris, G. J. and J. D. Bliss, 1991. *Some Industrial Mineral Deposit Models: Descriptive Deposit Models,* U.S. Geological Survey Open-File Report 91-0011-A, Tucson, Arizona, 82p.

United States Congress, 1872. 42nd United States Congress Act of May 10, 1872 (R.S. § 2319 et seq.; 30 U.S.C. 22 et seq.

APPENDIX A PLACER CLAIMS

Table A-1. Claim, Claim Location, and Claimant (Page 1 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 073	NV105756071	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	NE
HA 074	NV105756072	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	NE
HA 075	NV105756073	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	NW
HA 076	NV105756074	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	NW
HA 077	NV105756075	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	NW
HA 078	NV105756076	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	NW
HA 079	NV105756077	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NE
HA 080	NV105756078	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NE
HA 081	NV105756079	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NE
HA 082	NV105756080	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NE
HA 083	NV105756081	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NE
HA 084	NV105756082	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NW
HA 085	NV105756083	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NW
HA 086	NV105756084	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NW
HA 087	NV105756085	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NW
HA 088	NV105756086	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	19	NE
HA 089	NV105756087	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	19	NE
HA 090	NV105756088	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	19	NE
HA 091	NV105756089	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	19	NE
HA 092	NV105756090	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	NE
HA 093	NV105756091	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	SE
HA 094	NV105756092	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	NE
HA 095	NV105756093	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	SE
HA 096	NV105756094	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	NW
HA 097	NV105756095	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	SW
HA 098	NV105756096	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	NW
HA 099	NV105756097	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	SW
HA 100	NV105756098	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	NW
HA 101	NV105756099	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	SW

A-2

Table A-1. Claim, Claim Location, and Claimant (Page 2 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 102	NV105756100	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	NW
HA 103	NV105756101	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	SW
HA 104	NV105756102	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NE
HA 105	NV105756103	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SE
HA 106	NV105756104	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NE
HA 107	NV105756105	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SE
HA 108	NV105756106	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NE
HA 109	NV105756107	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SE
HA 110	NV105756108	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NE
HA 111	NV105756109	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SE
HA 112	NV105756110	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NE
HA 113	NV105756111	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SE
HA 114	NV105756112	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NW
HA 115	NV105756113	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SW
HA 116	NV105756114	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NW
HA 117	NV105756115	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SW
HA 118	NV105756116	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NW
HA 119	NV105756117	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SW
HA 120	NV105756118	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	NW
HA 121	NV105756119	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SW
HA 122	NV105756120	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	19	NE
HA 123	NV105756121	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	19	SE
HA 124	NV105756122	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	19	NE
HA 125	NV105756123	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	19	SE
HA 126	NV105756124	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	19	NE
HA 127	NV105756125	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	19	SE
HA 128	NV105756126	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	19	NE
HA 129	NV105756127	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	19	SE
HA 130	NV105756128	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	SE

Table A-1. Claim, Claim Location, and Claimant (Page 3 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 131	NV105756129	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	NE
HA 132	NV105756130	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	SE
HA 133	NV105756131	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	NE
HA 134	NV105756132	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	SW
HA 135	NV105756133	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	NW
HA 136	NV105756134	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	SW
HA 137	NV105756135	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	NW
HA 138	NV105756136	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	SW
HA 139	NV105756137	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	NW
HA 140	NV105756138	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	21	SW
HA 141	NV105756139	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	NW
HA 142	NV105756140	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SE
HA 143	NV105756141	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	NE
HA 144	NV105756142	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SE
HA 145	NV105756143	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	NE
HA 146	NV105756144	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SE
HA 147	NV105756145	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	NE
HA 148	NV105756146	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SE
HA 149	NV105756147	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	NE
HA 150	NV105756148	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SE
HA 151	NV105756149	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	NE
HA 152	NV105756150	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SW
HA 153	NV105756151	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	NW
HA 154	NV105756152	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SW
HA 155	NV105756153	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	NW
HA 156	NV105756154	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SW
HA 157	NV105756155	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	NW
HA 158	NV105756156	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	20	SW
HA 159	NV105756157	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	NW

Table A-1. Claim, Claim Location, and Claimant (Page 4 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 160	NV105756158	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	19	SE
HA 161	NV105756159	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	30	NE
HA 162	NV105756160	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	19	SE
HA 163	NV105756161	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	30	NE
HA 164	NV105756162	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	19	SE
HA 165	NV105756163	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	30	NE
HA 166	NV105756164	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	19	SE
HA 167	NV105756165	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	30	NE
HA 168	NV105756166	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	SE
HA 169	NV105756167	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	SE
HA 170	NV105756168	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	SW
HA 171	NV105756169	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	SW
HA 172	NV105756170	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	SW
HA 173	NV105756171	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	SW
HA 174	NV105756172	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	SE
HA 175	NV105756173	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	SE
HA 176	NV105756174	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	SE
HA 177	NV105756175	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	SE
HA 178	NV105756176	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	SE
HA 179	NV105756177	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	SE
HA 180	NV105756178	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	SE
HA 181	NV105756179	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	SW
HA 182	NV105756180	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	SW
HA 183	NV105756181	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	SW
HA 184	NV105756182	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	SW
HA 185	NV105756183	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	SW
HA 186	NV105756184	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	SW
HA 187	NV105756185	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	SW
HA 188	NV105756186	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	29	SW

Table A-1. Claim, Claim Location, and Claimant (Page 5 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 189	NV105756187	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	30	SE
HA 190	NV105756188	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	30	SE
HA 191	NV105756189	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	30	SE
HA 192	NV105756190	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	30	SE
HA 193	NV105756191	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	30	SE
HA 194	NV105756192	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	30	SE
HA 195	NV105756193	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	30	SE
HA 196	NV105756194	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	30	SE
HA 197	NV105756195	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NE
HA 198	NV105756196	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NE
HA 199	NV105756197	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NE
HA 200	NV105756198	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NE
HA 201	NV105756199	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NW
HA 202	NV105756200	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NW
HA 203	NV105756201	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NW
HA 204	NV105756202	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NW
HA 205	NV105756203	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NW
HA 206	NV105756204	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NW
HA 207	NV105756205	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NW
HA 208	NV105756206	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NW
HA 209	NV105756207	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	31	NE
HA 210	NV105756208	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	31	NE
HA 211	NV105756209	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	31	NE
HA 212	NV105756210	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	31	NE
HA 213	NV105756211	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	31	NE
HA 214	NV105756212	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	31	NE
HA 215	NV105756213	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	31	NE
HA 216	NV105756214	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	31	NE
HA 217	NV105756215	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NE

Table A-1. Claim, Claim Location, and Claimant (Page 6 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 218	NV105756216	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NE
HA 219	NV105756217	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NE
HA 220	NV105756218	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NE
HA 221	NV105756219	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NE
HA 222	NV105756220	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NE
HA 223	NV105756221	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NE
HA 224	NV105756222	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NE
HA 225	NV105756223	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NE
HA 226	NV105756224	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NE
HA 227	NV105756225	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NW
HA 228	NV105756226	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NW
HA 229	NV105756227	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NW
HA 230	NV105756228	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NW
HA 231	NV105756229	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NW
HA 232	NV105756230	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NW
HA 233	NV105756231	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NW
HA 234	NV105756232	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	NW
HA 235	NV105756233	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	NE
HA 236	NV105756234	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	NE
HA 237	NV105756235	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	NE
HA 238	NV105756236	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	NE
HA 239	NV105756237	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SE
HA 240	NV105756238	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SE
HA 241	NV105756239	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SE
HA 242	NV105756240	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SE
HA 243	NV105756241	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SE
HA 244	NV105756242	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SE
HA 245	NV105756243	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SE
HA 246	NV105756244	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SE

Table A-1. Claim, Claim Location, and Claimant (Page 7 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 247	NV105756245	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SE
HA 248	NV105756246	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SE
HA 249	NV105756247	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SW
HA 250	NV105756248	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SW
HA 251	NV105756249	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SW
HA 252	NV105756250	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SW
HA 253	NV105756251	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SW
HA 254	NV105756252	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SW
HA 255	NV105756253	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SW
HA 256	NV105756254	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	42E	31	SW
HA 257	NV105756255	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SE
HA 258	NV105756256	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SE
HA 259	NV105756257	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SE
HA 260	NV105756258	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SE
HA 261	NV105756259	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SE
HA 262	NV105756260	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SE
HA 263	NV105756261	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SE
HA 264	NV105756262	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SE
HA 265	NV105756263	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SW
HA 266	NV105756264	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SW
HA 267	NV105756265	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SW
HA 268	NV105756266	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SW
HA 269	NV105756267	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SW
HA 270	NV105756268	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SW
HA 271	NV105756269	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SW
HA 272	NV105756270	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SW
HA 273	NV105756271	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SW
HA 274	NV105756272	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	36	SW
HA 275	NV105756273	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	35	SE

Table A-1. Claim, Claim Location, and Claimant (Page 8 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 276	NV105756274	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	35	SE
HA 277	NV105756275	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	35	SE
HA 278	NV105756276	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	35	SE
HA 279	NV105756277	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	35	SE
HA 280	NV105756278	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	35	SE
HA 281	NV105756279	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	35	SE
HA 282	NV105756280	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	35	SE
HA 283	NV105756281	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	35	SW
HA 284	NV105756282	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	35	SW
HA 285	NV105756283	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	35	SW
HA 286	NV105756284	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	35	SW
HA 287	NV105756285	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	35	SW
HA 288	NV105756286	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	35	SW
HA 289	NV105756287	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	35	SW
HA 290	NV105756288	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	35	SW
HA 291	NV105756289	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SW
HA 292	NV105756290	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SW
HA 293	NV105756291	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SE
HA 294	NV105756292	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SE
HA 295	NV105756293	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SE
HA 296	NV105756294	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SE
HA 297	NV105756295	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SE
HA 298	NV105756296	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SE
HA 299	NV105756297	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SE
HA 300	NV105756298	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SE
HA 301	NV105756299	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SW
HA 302	NV105756300	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SW
HA 303	NV105756301	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SW
HA 304	NV105756302	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SW

Table A-1. Claim, Claim Location, and Claimant (Page 9 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 305	NV105756303	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SW
HA 306	NV105756304	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SW
HA 307	NV105756305	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SW
HA 308	NV105756306	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	34	SW
HA 309	NV105756307	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SE
HA 310	NV105756308	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SE
HA 311	NV105756309	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SE
HA 312	NV105756310	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SE
HA 313	NV105756311	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SE
HA 314	NV105756312	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SE
HA 315	NV105756313	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SE
HA 316	NV105756314	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SE
HA 317	NV105756315	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SE
HA 318	NV105756316	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SE
HA 319	NV105756317	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SW
HA 320	NV105756318	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SW
HA 321	NV105756319	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SW
HA 322	NV105756320	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SW
HA 323	NV105756321	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SW
HA 324	NV105756322	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SW
HA 325	NV105756338	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SW
HA 326	NV105756339	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	SW
HA 327	NV105756323	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SE
HA 328	NV105756324	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SE
HA 329	NV105756325	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SE
HA 330	NV105756326	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SE
HA 331	NV105756327	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SE
HA 332	NV105756328	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SE
HA 333	NV105756329	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SE

A-10

Table A-1. Claim, Claim Location, and Claimant (Page 10 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 334	NV105756330	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SE
HA 335	NV105756331	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SE
HA 336	NV105756332	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SE
HA 337	NV105756333	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SW
HA 338	NV105756334	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SW
HA 339	NV105756335	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SW
HA 340	NV105756336	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SW
HA 341	NV105756337	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SW
HA 342	NV105756340	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SW
HA 343	NV105756341	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SW
HA 344	NV105756342	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	SW
HA 345	NV105756343	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	31	SE
HA 346	NV105756344	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	31	SE
HA 347	NV105756345	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	31	SE
HA 348	NV105756346	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	31	SE
HA 349	NV105756347	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	31	SE
HA 350	NV105756348	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	31	SE
HA 351	NV105756349	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	31	SE
HA 352	NV105756350	2022 January 16	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	31	SE
HA 353	NV105756351	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NE
HA 354	NV105756352	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NE
HA 355	NV105756353	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NE
HA 356	NV105756354	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NE
HA 357	NV105756355	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NE
HA 358	NV105756356	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NE
HA 359	NV105756357	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NE
HA 360	NV105756358	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NE
HA 361	NV105756359	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NE
HA 362	NV105756360	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NE

Table A-1. Claim, Claim Location, and Claimant (Page 11 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 363	NV105756361	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NW
HA 364	NV105756362	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NW
HA 365	NV105756363	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NW
HA 366	NV105756364	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NW
HA 367	NV105756365	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NW
HA 368	NV105756366	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NW
HA 369	NV105756367	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NW
HA 370	NV105756368	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NW
HA 371	NV105756369	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NE
HA 372	NV105756370	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NE
HA 373	NV105756371	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NE
HA 374	NV105756372	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NE
HA 375	NV105756373	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NE
HA 376	NV105756374	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NE
HA 377	NV105756375	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NE
HA 378	NV105756376	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NE
HA 379	NV105756377	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NW
HA 380	NV105756378	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NW
HA 381	NV105756379	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NW
HA 382	NV105756380	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NW
HA 383	NV105756381	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NW
HA 384	NV105756382	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NW
HA 385	NV105756383	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NW
HA 386	NV105756384	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NW
HA 387	NV105756385	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NW
HA 388	NV105756386	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	NW
HA 389	NV105756387	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	NE
HA 390	NV105756388	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	NE
HA 391	NV105756389	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	NE

Table A-1. Claim, Claim Location, and Claimant (Page 12 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 392	NV105756390	2022 January 15	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	NE
HA 393	NV105756391	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	NE
HA 394	NV105756392	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	NE
HA 395	NV105756393	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	NE
HA 396	NV105756394	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	NE
HA 397	NV105756395	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	NW
HA 398	NV105756396	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	NW
HA 399	NV105756397	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	NW
HA 400	NV105756398	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	NW
HA 401	NV105756399	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	NW
HA 402	NV105756400	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	NW
HA 403	NV105756401	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	NW
HA 404	NV105756402	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	NW
HA 405	NV105756403	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NE
HA 406	NV105756404	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NE
HA 407	NV105756405	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NE
HA 408	NV105756406	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NE
HA 409	NV105756407	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NE
HA 410	NV105756408	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NE
HA 411	NV105756409	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NE
HA 412	NV105756410	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NE
HA 413	NV105756411	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NE
HA 414	NV105756412	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NE
HA 415	NV105756413	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NW
HA 416	NV105756414	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NW
HA 417	NV105756415	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NW
HA 418	NV105756416	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NW
HA 419	NV105756417	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NW
HA 420	NV105756418	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NW

Table A-1. Claim, Claim Location, and Claimant (Page 13 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 421	NV105756419	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NW
HA 422	NV105756420	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	NW
HA 423	NV105756421	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NE
HA 424	NV105756422	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NE
HA 425	NV105756423	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NE
HA 426	NV105756424	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NE
HA 427	NV105756425	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NE
HA 428	NV105756426	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NE
HA 429	NV105756427	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NE
HA 430	NV105756428	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NE
HA 431	NV105756429	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NE
HA 432	NV105756430	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NE
HA 433	NV105756431	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NW
HA 434	NV105756432	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NW
HA 435	NV105756433	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NW
HA 436	NV105756434	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NW
HA 437	NV105756435	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NW
HA 438	NV105756436	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NW
HA 439	NV105756437	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NW
HA 440	NV105756438	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	NW
HA 441	NV105756439	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NE
HA 442	NV105756440	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NE
HA 443	NV105756441	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NE
HA 444	NV105756442	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NE
HA 445	NV105756443	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NE
HA 446	NV105756444	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NE
HA 447	NV105756445	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NE
HA 448	NV105756446	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NE
HA 449	NV105756447	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NW

Table A-1. Claim, Claim Location, and Claimant (Page 14 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 450	NV105756448	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NW
HA 451	NV105756449	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NW
HA 452	NV105756450	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NW
HA 453	NV105756451	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NW
HA 454	NV105756452	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NW
HA 455	NV105756453	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NW
HA 456	NV105756454	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NW
HA 457	NV105756455	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NW
HA 458	NV105756456	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	NW
HA 459	NV105756457	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	06	NE
HA 460	NV105756458	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	06	NE
HA 461	NV105756459	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	06	NE
HA 462	NV105756460	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	06	NE
HA 463	NV105756461	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	06	NE
HA 464	NV105756462	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	06	NE
HA 465	NV105756463	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	06	NE
HA 466	NV105756464	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	06	NE
HA 467	NV105756465	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	SE
HA 468	NV105756466	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NE
HA 469	NV105756467	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	SE
HA 470	NV105756468	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NE
HA 471	NV105756469	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	SE
HA 472	NV105756470	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NE
HA 473	NV105756471	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	SE
HA 474	NV105756472	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NE
HA 475	NV105756473	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	SE
HA 476	NV105756474	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NE
HA 477	NV105756475	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	SW
HA 478	NV105756476	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NW

Table A-1. Claim, Claim Location, and Claimant (Page 15 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 479	NV105756477	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	SW
HA 480	NV105756478	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NW
HA 481	NV105756479	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	SW
HA 482	NV105756480	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NW
HA 483	NV105756481	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	SW
HA 484	NV105756482	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	06	NW
HA 485	NV105756483	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	SE
HA 486	NV105756484	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	NE
HA 487	NV105756485	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	SE
HA 488	NV105756486	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	NE
HA 489	NV105756487	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	SE
HA 490	NV105756488	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	NE
HA 491	NV105756489	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	SE
HA 492	NV105756490	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	NE
HA 493	NV105756491	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	SW
HA 494	NV105756492	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	NW
HA 495	NV105756493	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	SW
HA 496	NV105756494	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	NW
HA 497	NV105756495	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	SW
HA 498	NV105756496	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	NW
HA 499	NV105756497	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	01	SW
HA 500	NV105756498	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	NW
HA 501	NV105756499	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	SE
HA 502	NV105756500	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NE
HA 503	NV105756501	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	SE
HA 504	NV105756502	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NE
HA 505	NV105756503	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	SE
HA 506	NV105756504	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NE
HA 507	NV105756505	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	SE

Table A-1. Claim, Claim Location, and Claimant (Page 16 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 508	NV105756506	2022 January 26	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NE
HA 509	NV105756507	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	SE
HA 510	NV105756508	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NE
HA 511	NV105756509	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	SW
HA 512	NV105756510	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NW
HA 513	NV105756511	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	SW
HA 514	NV105756512	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NW
HA 515	NV105756513	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	SW
HA 516	NV105756514	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NW
HA 517	NV105756515	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	02	SW
HA 518	NV105756516	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NW
HA 519	NV105756517	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	SE
HA 520	NV105756518	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NE
HA 521	NV105756519	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	SE
HA 522	NV105756520	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NE
HA 523	NV105756521	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	SE
HA 524	NV105756522	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NE
HA 525	NV105756523	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	SE
HA 526	NV105756524	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NE
HA 527	NV105756525	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	SE
HA 528	NV105756526	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NE
HA 529	NV105756527	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	SW
HA 530	NV105756528	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NW
HA 531	NV105756529	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	SW
HA 532	NV105756530	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NW
HA 533	NV105756531	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	SW
HA 534	NV105756532	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NW
HA 535	NV105756533	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	03	SW
HA 536	NV105756534	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NW

Table A-1. Claim, Claim Location, and Claimant (Page 17 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 537	NV105756535	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	SE
HA 538	NV105756536	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NE
HA 539	NV105756537	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	SE
HA 540	NV105756538	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NE
HA 541	NV105756539	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	SE
HA 542	NV105756540	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NE
HA 543	NV105756541	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	SE
HA 544	NV105756542	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NE
HA 545	NV105756543	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	SE
HA 546	NV105756544	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NE
HA 547	NV105756545	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	SW
HA 548	NV105756546	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NW
HA 549	NV105756547	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	SW
HA 550	NV105756548	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NW
HA 551	NV105756549	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	SW
HA 552	NV105756550	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NW
HA 553	NV105756551	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	04	SW
HA 554	NV105756552	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NW
HA 555	NV105756553	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	SE
HA 556	NV105756554	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NE
HA 557	NV105756555	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	SE
HA 558	NV105756556	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NE
HA 559	NV105756557	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	SE
HA 560	NV105756558	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NE
HA 561	NV105756559	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	SE
HA 562	NV105756560	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NE
HA 563	NV105756561	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	SW
HA 564	NV105756562	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NW
HA 565	NV105756563	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	SW

Table A-1. Claim, Claim Location, and Claimant (Page 18 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 566	NV105756564	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NW
HA 567	NV105756565	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	SW
HA 568	NV105756566	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NW
HA 569	NV105756567	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	SW
HA 570	NV105756568	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NW
HA 571	NV105756569	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	05	SW
HA 572	NV105756570	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NW
HA 573	NV105756571	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	06	SE
HA 574	NV105756572	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	07	NE
HA 575	NV105756573	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	06	SE
HA 576	NV105756574	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	07	NE
HA 577	NV105756575	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	06	SE
HA 578	NV105756576	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	07	NE
HA 579	NV105756577	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	06	SE
HA 580	NV105756578	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	07	NE
HA 581	NV105756579	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	NE
HA 582	NV105756580	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SE
HA 583	NV105756581	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	NE
HA 584	NV105756582	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SE
HA 585	NV105756583	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	NE
HA 586	NV105756584	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SE
HA 587	NV105756585	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	NE
HA 588	NV105756586	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SE
HA 589	NV105756587	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	NW
HA 590	NV105756588	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SW
HA 591	NV105756589	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	NW
HA 592	NV105756590	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SW
HA 593	NV105756591	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	NW
HA 594	NV105756592	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SW

Table A-1. Claim, Claim Location, and Claimant (Page 19 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 595	NV105756593	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	NW
HA 596	NV105756594	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SW
HA 597	NV105756595	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	NW
HA 598	NV105756596	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SW
HA 599	NV105756597	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	NE
HA 600	NV105756598	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SE
HA 601	NV105756599	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	NE
HA 602	NV105756600	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SE
HA 603	NV105756601	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	NE
HA 604	NV105756602	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SE
HA 605	NV105756603	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	NE
HA 606	NV105756604	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SE
HA 607	NV105756605	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	NW
HA 608	NV105756606	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SW
HA 609	NV105756607	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	NW
HA 610	NV105756608	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SW
HA 611	NV105756609	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	NW
HA 612	NV105756610	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SW
HA 613	NV105756611	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	NW
HA 614	NV105756612	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SW
HA 615	NV105756613	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NE
HA 616	NV105756614	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SE
HA 617	NV105756615	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NE
HA 618	NV105756616	2022 January 25	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SE
HA 619	NV105756617	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NE
HA 620	NV105756618	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SE
HA 621	NV105756619	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NE
HA 622	NV105756620	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SE
HA 623	NV105756621	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NE

A-20

Table A-1. Claim, Claim Location, and Claimant (Page 20 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 624	NV105756622	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SE
HA 625	NV105756623	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NW
HA 626	NV105756624	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SW
HA 627	NV105756625	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NW
HA 628	NV105756626	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SW
HA 629	NV105756627	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NW
HA 630	NV105756628	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SW
HA 631	NV105756629	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	NW
HA 632	NV105756630	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SW
HA 633	NV105756631	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NE
HA 634	NV105756632	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SE
HA 635	NV105756633	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NE
HA 636	NV105756634	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SE
HA 637	NV105756635	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NE
HA 638	NV105756636	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SE
HA 639	NV105756637	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NE
HA 640	NV105756638	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SE
HA 641	NV105756639	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NE
HA 642	NV105756640	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SE
HA 643	NV105756641	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NW
HA 644	NV105756642	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SW
HA 645	NV105756643	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NW
HA 646	NV105756644	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SW
HA 647	NV105756645	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NW
HA 648	NV105756646	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SW
HA 649	NV105756647	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	NW
HA 650	NV105756648	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SW
HA 651	NV105756649	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NE
HA 652	NV105756650	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SE

A-21

Table A-1. Claim, Claim Location, and Claimant (Page 21 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 653	NV105756651	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NE
HA 654	NV105756652	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SE
HA 655	NV105756653	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NE
HA 656	NV105756654	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SE
HA 657	NV105756655	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NE
HA 658	NV105756656	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SE
HA 659	NV105756657	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NE
HA 660	NV105756658	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SE
HA 661	NV105756659	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NW
HA 662	NV105756660	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SW
HA 663	NV105756661	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NW
HA 664	NV105756662	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SW
HA 665	NV105756663	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NW
HA 666	NV105756664	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SW
HA 667	NV105756665	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	NW
HA 668	NV105756666	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SW
HA 669	NV105756667	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NE
HA 670	NV105756668	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SE
HA 671	NV105756669	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NE
HA 672	NV105756670	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SE
HA 673	NV105756671	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NE
HA 674	NV105756672	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SE
HA 675	NV105756673	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NE
HA 676	NV105756674	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SE
HA 677	NV105756675	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NW
HA 678	NV105756676	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SW
HA 679	NV105756677	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NW
HA 680	NV105756678	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SW
HA 681	NV105756679	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NW

Table A-1. Claim, Claim Location, and Claimant (Page 22 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 682	NV105756680	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SW
HA 683	NV105756681	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NW
HA 684	NV105756682	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SW
HA 685	NV105756683	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	NW
HA 686	NV105756684	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SW
HA 687	NV105756685	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	07	NE
HA 688	NV105756686	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	07	SE
HA 689	NV105756687	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	07	NE
HA 690	NV105756688	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	07	SE
HA 691	NV105756689	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	07	NW
HA 692	NV105756690	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	07	SW
HA 693	NV105756691	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	07	NW
HA 694	NV105756692	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	07	SW
HA 695	NV105756693	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SE
HA 696	NV105756694	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NE
HA 697	NV105756695	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SE
HA 698	NV105756696	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NE
HA 699	NV105756697	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SE
HA 700	NV105756698	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NE
HA 701	NV105756699	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SE
HA 702	NV105756700	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NE
HA 703	NV105756701	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SW
HA 704	NV105756702	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NW
HA 705	NV105756703	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SW
HA 706	NV105756704	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NW
HA 707	NV105756705	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SW
HA 708	NV105756706	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NW
HA 709	NV105756707	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	07	SW
HA 710	NV105756708	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NW

Table A-1. Claim, Claim Location, and Claimant (Page 23 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 711	NV105756709	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SE
HA 712	NV105756710	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NW
HA 713	NV105756711	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SE
HA 714	NV105756712	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NW
HA 715	NV105756713	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SE
HA 716	NV105756714	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NW
HA 717	NV105756715	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SE
HA 718	NV105756716	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NW
HA 719	NV105756717	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SE
HA 720	NV105756718	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NW
HA 721	NV105756719	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SW
HA 722	NV105756720	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NW
HA 723	NV105756721	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SW
HA 724	NV105756722	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NW
HA 725	NV105756723	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SW
HA 726	NV105756724	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NW
HA 727	NV105756725	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	12	SW
HA 728	NV105756726	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NW
HA 729	NV105756727	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SE
HA 730	NV105756728	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	14	NE
HA 731	NV105756729	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SE
HA 732	NV105756730	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	14	NE
HA 733	NV105756731	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SE
HA 734	NV105756732	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SE
HA 735	NV105756733	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SE
HA 736	NV105756734	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SW
HA 737	NV105756735	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SW
HA 738	NV105756736	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SW
HA 739	NV105756737	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	11	SW

Table A-1. Claim, Claim Location, and Claimant (Page 24 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 740	NV105756738	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SE
HA 741	NV105756739	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SE
HA 742	NV105756740	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SE
HA 743	NV105756741	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SE
HA 744	NV105756742	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SE
HA 745	NV105756743	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SW
HA 746	NV105756744	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SW
HA 747	NV105756745	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SW
HA 748	NV105756746	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	10	SW
HA 749	NV105756747	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SE
HA 750	NV105756748	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SE
HA 751	NV105756749	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SE
HA 752	NV105756750	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SE
HA 753	NV105756751	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SE
HA 754	NV105756752	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SW
HA 755	NV105756753	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SW
HA 756	NV105756754	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SW
HA 757	NV105756755	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	09	SW
HA 758	NV105756756	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SE
HA 759	NV105756757	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SE
HA 760	NV105756758	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SE
HA 761	NV105756759	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SE
HA 762	NV105756760	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SE
HA 763	NV105756761	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SW
HA 764	NV105756762	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SW
HA 765	NV105756763	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SW
HA 766	NV105756764	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	08	SW
HA 767	NV105756765	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	07	SE
HA 768	NV105756766	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	07	SE

Table A-1. Claim, Claim Location, and Claimant (Page 25 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 769	NV105756767	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	07	SE
HA 770	NV105756768	2022 January 27	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	07	SE
HA 771	NV105756769	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NE
HA 772	NV105756770	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	SE
HA 773	NV105756771	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NE
HA 774	NV105756772	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	SE
HA 775	NV105756773	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NE
HA 776	NV105756774	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	SE
HA 777	NV105756775	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NE
HA 778	NV105756776	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	SE
HA 779	NV105756777	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NW
HA 780	NV105756778	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	SW
HA 781	NV105756779	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NW
HA 782	NV105756780	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	SW
HA 783	NV105756781	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NW
HA 784	NV105756782	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	SW
HA 785	NV105756783	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NW
HA 786	NV105756784	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	SW
HA 787	NV105756785	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	NW
HA 788	NV105756786	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	18	SW
HA 789	NV105756787	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NE
HA 790	NV105756788	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	SE
HA 791	NV105756789	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NE
HA 792	NV105756790	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	SE
HA 793	NV105756791	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NE
HA 794	NV105756792	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	SE
HA 795	NV105756793	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NE
HA 796	NV105756794	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	SE
HA 797	NV105756795	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NW

A-26

Table A-1. Claim, Claim Location, and Claimant (Page 26 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 798	NV105756796	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	SW
HA 799	NV105756797	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NW
HA 800	NV105756798	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	SW
HA 801	NV105756799	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NW
HA 802	NV105756800	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	SW
HA 803	NV105756801	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	NW
HA 804	NV105756802	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	13	SW
HA 805	NV105756803	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	14	NE
HA 806	NV105756804	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	14	SE
HA 807	NV105756805	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	14	NE
HA 808	NV105756806	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	14	SE
HA 809	NV105756807	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NE
HA 810	NV105756808	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NE
HA 811	NV105756809	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NE
HA 812	NV105756810	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NE
HA 813	NV105756811	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NE
HA 814	NV105756812	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NE
HA 815	NV105756813	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NE
HA 816	NV105756814	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NE
HA 817	NV105756815	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NE
HA 818	NV105756816	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NE
HA 819	NV105756817	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NW
HA 820	NV105756818	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NW
HA 821	NV105756819	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NW
HA 822	NV105756820	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NW
HA 823	NV105756821	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NW
HA 824	NV105756822	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NW
HA 825	NV105756823	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NW
HA 826	NV105756824	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	NW

Table A-1. Claim, Claim Location, and Claimant (Page 27 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 827	NV105756825	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NE
HA 828	NV105756826	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NE
HA 829	NV105756827	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NE
HA 830	NV105756828	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NE
HA 831	NV105756829	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NE
HA 832	NV105756830	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NE
HA 833	NV105756831	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NE
HA 834	NV105756832	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NE
HA 835	NV105756833	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NW
HA 836	NV105756834	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NW
HA 837	NV105756835	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NW
HA 838	NV105756836	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NW
HA 839	NV105756837	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NW
HA 840	NV105756838	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NW
HA 841	NV105756839	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NW
HA 842	NV105756840	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NW
HA 843	NV105756841	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NW
HA 844	NV105756842	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	NW
HA 845	NV105756843	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	23	NE
HA 846	NV105756844	2022 January 24	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	23	NE
HA 847	NV105756845	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SE
HA 848	NV105756846	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SE
HA 849	NV105756847	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SE
HA 850	NV105756848	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SE
HA 851	NV105756849	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SE
HA 852	NV105756850	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SE
HA 853	NV105756851	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SE
HA 854	NV105756852	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SE
HA 855	NV105756853	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SE

A-28

Table A-1. Claim, Claim Location, and Claimant (Page 28 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 856	NV105756854	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SE
HA 857	NV105756855	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SW
HA 858	NV105756856	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SW
HA 859	NV105756857	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SW
HA 860	NV105756858	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SW
HA 861	NV105756859	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SW
HA 862	NV105756860	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SW
HA 863	NV105756861	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SW
HA 864	NV105756862	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	42E	19	SW
HA 865	NV105756863	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SE
HA 866	NV105756864	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SE
HA 867	NV105756865	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SE
HA 868	NV105756866	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SE
HA 869	NV105756867	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SE
HA 870	NV105756868	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SE
HA 871	NV105756869	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SE
HA 872	NV105756870	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SE
HA 873	NV105756871	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SW
HA 874	NV105756872	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SW
HA 875	NV105756873	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SW
HA 876	NV105756874	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SW
HA 877	NV105756875	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SW
HA 878	NV105756876	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SW
HA 879	NV105756877	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SW
HA 880	NV105756878	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SW
HA 881	NV105756879	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SW
HA 882	NV105756880	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	24	SW
HA 883	NV105756881	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	23	SE
HA 884	NV105756882	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	2N	41E	23	SE

A-29

Table A-1. Claim, Claim Location, and Claimant (Page 29 of 29)

Claim Name	Serial Number	Location Date	Claimant Name	Meridian	Township	Range	Section	Subdivision
HA 885	NV105756883	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	SE
HA 886	NV105756884	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	SE
HA 887	NV105756885	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	SW
HA 888	NV105756886	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	SW
HA 889	NV105756887	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	SW
HA 890	NV105756888	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	SW
HA 891	NV105756889	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	SE
HA 892	NV105756890	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	SE
HA 893	NV105756891	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	28	SE
HA 894	NV105756892	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	NE
HA 895	NV105756893	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	NE
HA 896	NV105756894	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	NE
HA 897	NV105756895	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	NE
HA 898	NV105756896	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	NW
HA 899	NV105756897	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	NW
HA 900	NV105756898	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	NW
HA 901	NV105756899	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	NW
HA 902	NV105756900	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	NW
HA 903	NV105756901	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	NW
HA 904	NV105756902	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	NW
HA 905	NV105756903	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	33	NW
HA 906	NV105756904	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NE
HA 907	NV105756905	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NE
HA 908	NV105756906	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NE
HA 909	NV105756907	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NE
HA 910	NV105756908	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NE
HA 911	NV105756909	2022 January 23	FMS Lithium Corporation	Mount Diablo Meridian	ЗN	41E	32	NE

A-30

Data accessed from the US Department of the Interior, Bureau of Land Management's Mineral & Land Records System, October 18, 2022.

Bureau of Land Management, 2022. Mining Claims (MASS) Serial Register Pages, U.S. Dept of the Interior, accessed October 18, https://reports.blm.gov/reports/LR2000.